Drivers of recent decline in dust activity over East Asia
Nature Communications
https://doi.org/10.1038/S41467-022-34823-3Abstract
It is essential to understand the factors driving the recent decline of dust activity in East Asia for future dust projections. Using a physically-based dust emission model, here we show that the weakening of surface wind and the increasing of vegetation cover and soil moisture have all contributed to the decline in dust activity during 2001 to 2017. The relative contributions of these three factors to the dust emission reduction during 2010–2017 relative to 2001 are 46%, 30%, and 24%, respectively. Much (78%) of the dust emission reduction is from barren lands, and a small fraction (4.6%) of the reduction is attributed to grassland vegetation increase that is partly ascribed to the ecological restoration. This suggests that the ecological restoration plays a minor role in the decline of dust activity. Rather, the decline is mainly driven by climatic factors, with the weakening of surface wind playing the dominant role.
References (69)
- Goudie, A. S. & Middleton, N. J. Desert Dust in the Global System (Springer, Berlin, 2006).
- Shao, Y. Physics and Modelling of Wind Erosion (Springer, Ber- lin, 2008).
- Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C. & Zhao, M. Global- scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Rev. Geophys. 50, Rg3005 (2012).
- Wu, C., Lin, Z. & Liu, X. The global dust cycle and uncertainty in CMIP5 (Coupled Model Intercomparison Project phase 5) models. Atmos. Chem. Phys. 20, 10401-10425 (2020).
- Guan, Q. et al. Climatological analysis of dust storms in the area surrounding the Tengger Desert during 1960-2007. Clim. Dyn. 45, 903-913 (2015).
- Guan, Q. et al. Dust storms in Northern China: long-term spatio- temporal characteristics and climate controls. J. Clim. 30, 6683-6700 (2017).
- Wyrwoll, K.-H., Wei, J., Lin, Z., Shao, Y. & He, F. Cold surges and dust events: Establishing the link between the East Asian Winter Mon- soon and the Chinese loess record. Quat. Sci. Rev. 149, 102-108 (2016).
- Wu, C. et al. Can climate models reproduce the decadal change of dust aerosol in East Asia? Geophys. Res. Lett. 45, 9953-9962 (2018).
- Shao, Y. et al. Northeast Asian dust storms: Real-time numerical prediction and validation. J. Geophys. Res. -Atmos. 108, 4691 (2003).
- Zhou, Z. & Zhang, G. Typical severe dust storms in northern China during 1954 -2002. Chin. Sci. Bull. 48, 2366-2370 (2003).
- Zhao, Y., Xin, Z. & Ding, G. Spatiotemporal variation in the occur- rence of sand-dust events and its influencing factors in the Beijing- Tianjin Sand Source Region, China, 1982-2013. Regional Environ. Change 18, 2433-2444 (2018).
- Wang, S. et al. Weakened dust activity over China and Mongolia from 2001 to 2020 associated with climate change and land-use management. Environ. Res. Lett. 16, 124056 (2021).
- Zhang, Q. et al. Drivers of improved PM2.5 air quality in China from 2013 to 2017. Proc. Natl Acad. Sci. 116, 24463-24469 (2019).
- Zhang, Y. et al. Multiple afforestation programs accelerate the greenness in the 'Three North' region of China from 1982 to 2013. Ecol. Indic. 61, 404-412 (2016).
- Chen, C. et al. China and India lead in greening of the world through land-use management. Nat. Sustainability 2, 122-129 (2019).
- Wang, X. M., Zhang, C. X., Hasi, E. & Dong, Z. B. Has the Three Norths Forest Shelterbelt Program solved the desertification and dust storm problems in arid and semiarid China? J. Arid Environ. 74, 13-22 (2010).
- Tan, M. & Li, X. Does the Green Great Wall effectively decrease dust storm intensity in China? A study based on NOAA NDVI and weather station data. Land Use Policy 43, 42-47 (2015).
- Middleton, N. Variability and trends in dust storm frequency on decadal timescales: climatic drivers and human impacts. Geos- ciences 9, 261 (2019).
- Mao, R., Ho, C.-H., Feng, S., Gong, D.-Y. & Shao, Y. The influence of vegetation variation on Northeast Asian dust activity. Asia-Pac. J. Atmos. Sci. 49, 87-94 (2013).
- Song, H., Zhang, K., Piao, S. & Wan, S. Spatial and temporal varia- tions of spring dust emissions in northern China over the last 30 years. Atmos. Environ. 126, 117-127 (2016).
- Tai, A. P. K. et al. Impacts of climate and land cover variability and trends on springtime East Asian dust emission over 1982-2010: A modeling study. Atmos. Environ. 254, 118348 (2021).
- Wu, C. & Lin, Z. Uncertainty in dust budget over East Asia simulated by WRF/Chem with six different dust emission schemes. Atmos. Ocean. Sci. Lett. 6, 428-433 (2013).
- Wu, C. et al. A process-oriented evaluation of dust emission para- meterizations in CESM: Simulation of a typical severe dust storm in East Asia. J. Adv. Modeling Earth Syst. 8, 1432-1452 (2016).
- Xu, J. et al. The spatio-temporal disparities of areas benefitting from the wind erosion prevention service. Int. J. Environ. Res. Pub. Health. 15, 1510 (2018).
- Yu, H. et al. Interannual variability and trends of combustion aerosol and dust in major continental outflows revealed by MODIS retrie- vals and CAM5 simulations during 2003-2017. Atmos. Chem. Phys. 20, 139-161 (2020).
- Song, Q., Zhang, Z., Yu, H., Ginoux, P. & Shen, J. Global dust optical depth climatology derived from CALIOP and MODIS aerosol retrievals on decadal timescales: regional and interannual varia- bility. Atmos. Chem. Phys. 21, 13369-13395 (2021).
- Natsagdorj, L., Jugder, D. & Chung, Y. S. Analysis of dust storms observed in Mongolia during 1937-1999. Atmos. Environ. 37, 1401-1411 (2003).
- Uno, I., arada, K., Satake, S., Hara, Y. & Wang, Z. Meteorological characteristics and dust distribution of the Tarim Basin simulated by the nesting RAMS/CFORS dust model. J. Meteorological Soc. Jpn. 83A, 219-239 (2005).
- Zhu, Z. et al. Greening of the Earth and its drivers. Nat. Clim. Change. 6, 791-795 (2016).
- Ding, R., Li, J., Wang, S. & Ren, F. Decadal change of the spring dust storm in northwest China and the associated atmospheric circula- tion. Geophys. Res. Lett. 32, L02808 (2005).
- Li, Y. et al. Aeolian dust dynamics in the Fergana Valley, Central Asia, since ~30 ka inferred from loess deposits. Geosci. Front. 12, 101180 (2021).
- Piao, S. et al. Characteristics, drivers and feedbacks of global greening. Nat. Rev. Earth Environ. 1, 14-27 (2020).
- Lian, X. et al. Multifaceted characteristics of dryland aridity changes in a warming world. Nat. Rev. Earth Environ. 2, 232-250 (2021).
- Shao, Y., Fraedrich, K. & Ishizuka, M. Modelling soil moisture in hyper-arid conditions. Bound.-Layer. Meteorol. 179, 169-186 (2021).
- Wu, C. et al. Description of dust emission parameterization in CAS- ESM2 and its simulation of global dust cycle and East Asian dust events. J. Adv. Modeling Earth Syst. 13, e2020MS002456 (2021).
- Karnauskas, K. B., Lundquist, J. K. & Zhang, L. Southward shift of the global wind energy resource under high carbon dioxide emissions. Nat. Geosci. 11, 38-43 (2018).
- Shen, C. et al. Estimating centennial-scale changes in global ter- restrial near-surface wind speed based on CMIP6 GCMs. Environ. Res. Lett. 16, 084039 (2021).
- Zhang, P. et al. Abrupt shift to hotter and drier climate over inner East Asia beyond the tipping point. Science 370, 1095-1099 (2020).
- Zeng, Z. et al. A reversal in global terrestrial stilling and its impli- cations for wind energy production. Nat. Clim. Change. 9, 979-985 (2019).
- IPCC. Summary for Policymakers. In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change [Masson-Delmotte, V. (eds.)] (Cambridge University Press, Cambridge and New York, 2021).
- Luo, Q., Zhen, L., Xiao, Y. & Wang, H. The effects of different types of vegetation restoration on wind erosion prevention: a case study in Yanchi. Environ. Res. Lett. 15, 115001 (2020).
- Tian, M. et al. Effects of dust emissions from wind erosion of soil on ambient air quality. Atmos. Pollut. Res. 12, 101108 (2021).
- Kharol, S. K., Kaskaoutis, D. G., Badarinath, K. V. S., Sharma, A. R. & Singh, R. P. Influence of land use/land cover (LULC) changes on atmospheric dynamics over the arid region of Rajasthan state, India. J. Arid Environ. 88, 90-101 (2013).
- Emamian, A. et al. Assessing vegetation restoration potential under different land uses and climatic classes in northeast Iran. Ecol. Indic. 122, 107325 (2021).
- Gholami, H. et al. Integrated modelling for mapping spatial sources of dust in central Asia -An important dust source in the global atmospheric system. Atmos. Pollut. Res. 12, 101173 (2021).
- Hamidianpour, M., Jahanshahi, S. M. A., Kaskaoutis, D. G., Rashki, A. & Nastos, P. G. Climatology of the Sistan Levar wind: Atmospheric dynamics driving its onset, duration and withdrawal. Atmos. Res. 260, 105711 (2021).
- Shao, Y. A model for mineral dust emission. J. Geophys. Res. Atmos. 106, 20239-20254 (2001).
- Shao, Y. Simplification of a dust emission scheme and comparison with data. J. Geophys. Res. Atmos. 109, D10202 (2004).
- White, B. R. Soil transport by winds on Mars. J. Geophys. Res. 84, 4643-4651 (1979).
- Fecan, F., Marticorena, B. & Bergametti, G. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas. Ann. Geophys. Atm. Hydr. 17, 149-157 (1999).
- Raupach, M. R., Gillette, D. A. & Leys, J. F. The effect of roughness elements on wind erosion threshold. J. Geophys. Res. Atmos. 98, 3023-3029 (1993).
- Shao, Y., Ishizuka, M., Mikami, M. & Leys, J. F. Parameterization of size-resolved dust emission and validation with measurements. J. Geophys. Res. Atmos. 116, D08203 (2011).
- Shao, Y., Leys, J. F., McTainsh, G. H. & Tews, K. Numerical simulation of the October 2002 dust event in Australia. J. Geophys. Res. Atmos. 112, D08207 (2007).
- Shao, Y., Fink, A. H. & Klose, M. Numerical simulation of a continental-scale Saharan dust event. J. Geophys. Res. Atmos. 115, D13205 (2010).
- Kang, J. Y., Yoon, S. C., Shao, Y. & Kim, S. W. Comparison of vertical dust flux by implementing three dust emission schemes in WRF/ Chem. J. Geophys. Res. Atmos. 116, D09202 (2011).
- Article https://doi.org/10.1038/s41467-022-34823-3
- Nature Communications | (2022) 13:7105
- Hamidi, M., Kavianpour, M. R. & Shao, Y. Numerical simulation of dust events in the Middle East. Aeolian Res. 13, 59-70 (2014).
- Klose, M. et al. Mineral dust cycle in the Multiscale Online Non- hydrostatic AtmospheRe CHemistry model (MONARCH) Version
- 0. Geosci. Model Dev. 14, 6403-6444 (2021).
- Gelaro, R. et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 30, 5419-5454 (2017).
- Reichle, R. H. et al. Assessment of MERRA-2 land surface hydrology estimates. J. Clim. 30, 2937-2960 (2017).
- Reichle, R. H. et al. Land surface precipitation in MERRA-2. J. Clim. 30, 1643-1664 (2017).
- Darmenov, A. S. Developing and testing a coupled regional mod- eling system for establishing an integrated modeling and observa- tional framework for dust aerosol. (Doctoral dissertation) (Georgia Tech Library, Atlanta, 2009).
- Xiao, Z. et al. Use of General Regression Neural Networks for gen- erating the GLASS Leaf Area Index product from time-series MODIS surface reflectance. IEEE Trans. Geosci. Remote Sens. 52, 209-223 (2014).
- Tang, H. et al. A cloud detection method based on a time series of MODIS surface reflectance images. Int. J. Digital Earth. 6, 157-171 (2013).
- Ginoux, P. et al. Sources and distributions of dust aerosols simu- lated with the GOCART model. J. Geophys. Res. Atmos. 106, 20255-20273 (2001).
- Shao, Y., Klose, M. & Wyrwoll, K.-H. Recent global dust trend and connections to climate forcing. J. Geophys. Res. -Atmos. 118, 11,107-111,118 (2013).
- Hamzeh, N. H., Kaskaoutis, D. G., Rashki, A. & Mohammadpour, K. Long-term variability of dust events in Southwestern Iran and its relationship with the drought. Atmosphere 12, 1350 (2021).