On the use of rhodium mirrors for optical diagnostics in ITER
2019, Fusion Engineering and Design
https://doi.org/10.1016/J.FUSENGDES.2019.04.031Abstract
The first mirrors of optical diagnostics in ITER are exposed to high radiation and fluxes of particles which escape the plasma, in the order of 10 20 m −2 s −1. At the position of the mirror, the flux may still reach about 10 18 m −2 s −1. First mirrors are thus the most vulnerable in-vessel optical components, being subject to erosion, esp. by fast charge-exchange neutrals, or to deposition of impurities at flux rates which can reach 0.05 nm/s. The material selected for the reflecting surface must combine a high optical reflectivity in a wide spectral range and a sufficient resistance to physical sputtering during normal operation and during mirror cleaning discharges, if any is installed. Rhodium (103 Rh) was identified early as a possible or even promising candidate. It combines several attractive properties, for instance a mass which leads in most cases to low sputtering yields together with an optical reflectance (75% Rh) which is much higher than of some other options. Rh is insensitive to large temperature changes. Rhodium is fairly inert and its low oxidation is an appreciable advantage in case of steam ingress events. The core-plasma CXRS diagnostic in ITER (UPP 3) have now turned to Rh as a baseline. The aim is to procure monocrystalline rhodium (SC-Rh) to mitigate the increase of the diffuse reflection with the damage due to physical sputtering.
References (39)
- W.W. Coblentz, R. Stair, Note on the Spectral Reflectivity of Rhodium, J. Res. Natl. Bureau Stand. 22 (1939) 93-95 [RP1168].
- D. Orlinski, A.F. Bardamid, V. Konovalov, et al., Rhodium as the promising material for the first mirrors of laser and spectroscopy methods of plasma diagnostics in a fusion reactor, Prob. Atom. Sci. Tech. 3 Ser.: Plasma Phys. 5 (2000) 67-69 [UDC 533.9].
- F.P. Orsitto, D. Del Bugaro, M. DiFino, et al., Optical characterization of plasma facing mirrors for a Thomson scattering system of a burning plasma experiment, Rev. Sci. Instrum. 72 (2001) 540-544.
- M. Joanny, J.M. Travère, S. Salasca, et al., Achievements on engineering and manufacturing of ITER first-mirror mock-ups, IEEE Trans. Plasma Sci. 40 (2012) 692-696.
- M. Rubel, D. Ivanova, P.J.P. Coad, et al., Overview of the second stage in the comprehensive mirrors test in JET, Phys. Scr. T145 (2011) 014070 (6 pp.).
- D. Ivanova, M. Rubel, A. Widdowson, et al., An overview of the comprehensive First Mirror Test in JET with ITER-like wall, Phys. Scr. T159 (2014) 014011 (10 pp.).
- L. Marot, G. Arnoux, A. Huber, et al., Optical coatings as mirrors for optical diag- nostics, J. Coat. Sci Tech. 2 (2015) 72-78.
- A. Litnovsky, V.S. Voitsenya, R. Reichle, et al., Diagnostic mirrors for ITER: research in the frame of International Tokamak Physics Activity, 27th Fusion Energy Conference, Ahmedabad, 2018 accepted for publication in Nucl. Fusion.
- A. Krimmer, I. Balboa, N.J. Conway et al. Design Status of the ITER Core CXRS Diagnostic Setup, Proc. 30th SOFT (this conference), Fusion Eng. Des., in press, https://doi.org/10.1016/j.fusengdes.2018.12.026.
- Ph. Mertens, The core-plasma CXRS diagnostic for ITER -an introduction to the current design, Proc. 16th Ettore Majorana School on Diagnostics and Technology Developments, Journal of Fusion Energy, Springer Science+Business Media, LLC, part of Springer Nature (2018) https://doi.org/10.1007/s10894-018-0202-1.
- V. Kotov, Engineering estimates of impurity fluxes on the ITER port plugs, Nucl. Fusion 56 (2016) 106027 (11 pp.).
- Ph. Mertens, Baseline for the First Mirror of the core CXRS diagnostic: Materials, Contamination and Cleaning, ITPA-31 (Nov. 2016) Pres. No. 10-02.
- Sections 4&12: properties of the elements & properties of solids, in: D.R. Lide (Ed.), Handbook of Chemistry and Physics, 79th ed., CRC Press, 1998-1999.
- J.H. Weaver, H.P.R. Frederikse, Optical properties of metals and semiconductors, in: D.R. Lide (Ed.), Handbook of Chemistry and Physics, 79th ed., CRC Press, 1998-1999, pp. 12-141.
- J.H. Weaver, Optical properties of Rh, Pd, Ir and Pt, Phys. Rev. B 11 (1975) 1416-1425.
- R.M. Almazán, A. Pereira, et al., Internal F4E Report, (2017) F4E_D_28KEAR.
- L.A. Carol, G.S. Mann, High-temperature oxidation of rhodium, Oxid. Metals 34 (1990) 1-12.
- Gestis Substance Database, information system on hazardous substances, under www.dguv.de/ifa/gestis-database.
- Yu. Krasikov, A. Panin, A. Litnovsky, Ph. Mertens, M. Schrader, Specific design and structural issues of single crystalline first mirrors for diagnostics, Fusion Eng. Des. 124 (2017) 548-552.
- Y. Krasikov, Private Communication, (2018).
- V.S. Voitsenya, M. Balden, A.F. Bardamid, et al., Development of surface relief on polycrystalline metals due to sputtering, Nucl. Instr. Methods Phys. Res. B 302 (2013) 32-39.
- L. Moser, L. Marot, R. Steiner, et al., Plasma cleaning of ITER first mirrors, Phys. Scr. T170 (2017) 014047 (7 pp.).
- MaTecK, Material-Technologie & Kristalle GmbH, 52428 Jülich, Germany.
- J.R. Carruthers, Crystal Growth from the melt, in: N.B. Hannay (Ed.), Treatise on Solid State Chemistry, Vol. 5 -Changes of State, Springer Science+Business Media, 1975.
- M.T. Robinson, Theoretical aspects of monocrystal sputtering, in: R. Behrisch (Ed.), Sputtering by Particle Bombardment I, Topics in Applied Physics 47, Springer, 1981.
- T.W. Snouse, L.C. Haughney, Sputtering of single-crystal copper, J. Appl. Phys. 37 (1966) 700-704.
- G.J. Ogilvie, J.V. Sanders, A.A. Thomson, The bombardment of gold films by inert gas ions, J. Phys. Chem. Solids 24 (1963) 247-259.
- E.J. Zdanuk, S.P. Wolsky, Sputtering of single crystal copper and aluminum with 20-600 eV argon ions, J. Appl. Phys. 36 (1965) 1683-1687.
- A. Litnovsky, Yu. Krasikov, M. Rasinski, et al., First direct comparative test of single crystal rhodium and molybdenum mirrors for ITER diagnostics, Fusion Eng. Des. 123 (2017) 674-677.
- A. Litnovsky, J. Peng, A. Kreter et al., Optimization of single crystal mirrors for ITER diagnostics, Fusion Eng. Des. (Proc. 30th SOFT) in the present volume.
- A. Kreter, C. Brandt, A. Huber, et al., Linear plasma device PSI-2 for plasma-ma- terial interaction studies, Fusion Sci. Tech. 68 (2015) 8-14.
- L.L. Tongson, C.B. Cooper, Low energy argon differential sputtering yields and thersholds along the < 110 > and < 100 > directions from the single crystal silver surfaces, Radiat. Effects 24 (1975) 187-193.
- N. Laegreid, G.K. Wehner, Sputtering yields of metals for Ar + and Ne + ions with energies from 50 to 600 eV, J. Appl. Phys. 32 (1961) 365-369.
- A. Garcia-Carrasco, P. Petersson, M. Rubel, et al., Plasma impact on diagnostic mirrors in JET, Nucl. Mater. Energy 12 (2017) 506-512.
- O. Marchuk, C. Brandt, A. Pospieszczyk, et al., Emission of fast hydrogen atoms at a plasma-solid interface in a low density plasma containing noble gases, J. Phys. B: At. Mol. Opt. Phys. 51 (2018) 025702 (19 pp.).
- S. Dickheuer, O. Marchuk, C. Brandt, et al., In situ measurements of the spectral reflectance of metallic mirrors at the H α line in a low density Ar-H plasma, Rev. Sci. Instrum. 89 (2018) 063112.
- S. Dickheuer, O. Marchuk, S. Ertmer, et al., In situ measurement of the spectral reflectance of mirror-like metallic surfaces during plasma exposition, Nucl. Mat. and Energy 17 (2018) 302-306.
- K. Ujihara, Reflectivity of metals at high temperatures, J. Appl. Phys. 43 (1972) 2376-2383.
- M. Minissale, C. Pardanaud, R. Bisson, L. Gallais, The temperature dependence of optical properties of tungsten in the visible and near-infrared domains: an experi- mental and theoretical study, J. Phys. D: Appl. Phys. 50 (2017) 455601 (12 pp.).