Academia.eduAcademia.edu

Outline

Extended family of generalized Chaplygin gas models

2018, Physical review

https://doi.org/10.1103/PHYSREVD.98.043515

Abstract

The generalized Chaplygin gas is usually defined as a barotropic perfect fluid with an equation of state p = −Aρ −α , where ρ and p are the proper energy density and pressure, respectively, and A and α are positive real parameters. It has been extensively studied in the literature as a quartessence prototype unifying dark matter and dark energy. Here, we consider an extended family of generalized Chaplygin gas models parameterized by three positive real parameters A, α and β, which, for two specific choices of β [β = 1 and β = (1 + α) /(2α)], is described by two different Lagrangians previously identified in the literature with the generalized Chaplygin gas. We show that, for β > 1/2, the linear stability conditions and the maximum value of the sound speed cs are regulated solely by β, with 0 ≤ cs ≤ 1 if β ≥ 1. We further demonstrate that in the nonrelativistic regime the standard equation of state p = −Aρ −α of the generalized Chaplygin gas is always recovered, while in the relativistic regime this is true only if β = (1 + α) /(2α). We present a regularization of the (α → 0, A → ∞) limit of the generalized Chaplygin gas, showing that it leads to a logarithmic Chaplygin gas model with an equation of state of the form p = A ln (ρ/ρ *), where A is a real parameter and ρ * > 0 is an arbitrary energy density. We finally derive its Lagrangian formulation.

References (26)

  1. A. G. Riess, A. V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks, P. M. Garnavich, R. L. Gilliland, C. J. Hogan, S. Jha, R. P. Kirshner, et al., The Astronomical Journal 116, 1009 (1998), astro-ph/9805201.
  2. S. Perlmutter, G. Aldering, G. Goldhaber, R. A. Knop, P. Nugent, P. G. Castro, S. Deustua, S. Fabbro, A. Goo- bar, D. E. Groom, et al., Astrophys. J. 517, 565 (1999), astro-ph/9812133.
  3. N. Suzuki, D. Rubin, C. Lidman, G. Aldering, R. Aman- ullah, K. Barbary, L. F. Barrientos, J. Botyanszki, M. Brodwin, N. Connolly, et al., Astrophys. J. 746, 85 (2012), 1105.3470.
  4. L. Anderson, É. Aubourg, S. Bailey, F. Beutler, V. Bhardwaj, M. Blanton, A. S. Bolton, J. Brinkmann, J. R. Brownstein, A. Burden, et al., Mon. Not. R. Astron. Soc. 441, 24 (2014), 1312.4877.
  5. Planck Collaboration, P. A. R. Ade, N. Aghanim, M. Ar- naud, M. Ashdown, J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, J. G. Bartlett, et al., Astron. Astrophys. 594, A13 (2016), 1502.01589.
  6. P. Bull, Y. Akrami, J. Adamek, T. Baker, E. Bellini, J. Beltrán Jiménez, E. Bentivegna, S. Camera, S. Clesse, J. H. Davis, et al., Physics of the Dark Universe 12, 56 (2016), 1512.05356.
  7. P. Avelino, T. Barreiro, C. S. Carvalho, A. da Silva, F. S. N. Lobo, P. Martin-Moruno, J. P. Mimoso, N. J. Nunes, D. Rubiera-Garcia, D. Saez-Gomez, et al., Sym- metry: Feature Papers 2016 (2016), 1607.02979.
  8. A. Kamenshchik, U. Moschella, and V. Pasquier, Physics Letters B 511, 265 (2001), gr-qc/0103004.
  9. Y. Bergner and R. Jackiw, Physics Letters A 284, 146 (2001), physics/0103092.
  10. M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev. D 66, 043507 (2002), gr-qc/0202064.
  11. P. P. Avelino, L. M. G. Beca, J. P. M. de Carvalho, and C. J. A. P. Martins, JCAP 9, 002 (2003), astro- ph/0307427.
  12. R. Jackiw, ArXiv Physics e-prints (2000), physics/0010042.
  13. L. M. G. Beça and P. P. Avelino, Mon.Not.Roy.Astron.Soc. 376, 1169 (2007), astro- ph/0507075.
  14. M. Hassaïne, Journal of Mathematical Physics 47, 033101 (2006), hep-th/0511243.
  15. R. Banerjee, S. Ghosh, and S. Kulkarni, Phys. Rev. D 75, 025008 (2007), gr-qc/0611131.
  16. T. Chiba, T. Okabe, and M. Yamaguchi, Phys. Rev. D 62, 023511 (2000), astro-ph/9912463.
  17. C. Armendariz-Picon, V. Mukhanov, and P. J. Stein- hardt, Phys. Rev. D 63, 103510 (2001), astro- ph/0006373.
  18. R. de Putter and E. V. Linder, Astroparticle Physics 28, 263 (2007), 0705.0400.
  19. R. J. Scherrer, Physical Review Letters 93, 011301 (2004), astro-ph/0402316.
  20. D. Bertacca, N. Bartolo, and S. Matarrese, Advances in Astronomy 2010, 904379 (2010), 1008.0614.
  21. H. B. Sandvik, M. Tegmark, M. Zaldarriaga, and I. Waga, Phys. Rev. D 69, 123524 (2004), astro- ph/0212114.
  22. N. Bilic, R. J. Lindebaum, G. B. Tupper, and R. D. Vi- ollier, JCAP 11, 008 (2004), astro-ph/0307214.
  23. P. P. Avelino, K. Bolejko, and G. F. Lewis, Phys. Rev. D 89, 103004 (2014), 1403.1718.
  24. S. Kumar and A. A. Sen, JCAP 10, 036 (2014), 1405.5688.
  25. N. Bilić, G. B. Tupper, and R. D. Viollier, Physics Letters B 535, 17 (2002), astro-ph/0111325.
  26. L. R. Abramo and N. Pinto-Neto, Phys. Rev. D 73, 063522 (2006), astro-ph/0511562.