Academia.eduAcademia.edu

Outline

Approximate Computing-Based Processing of MEA Signals on FPGA

Electronics

https://doi.org/10.3390/ELECTRONICS12040848

Abstract

Microelectrode arrays (MEAs) are essential equipment in neuroscience for studying the nervous system’s behavior and organization. MEAs are arrays of parallel electrodes that work by sensing the extracellular potential of neurons in their proximity. Processing the data streams acquired from MEAs is a computationally intensive task requiring parallelization. It is performed using complex signal processing algorithms and architectural templates. In this paper, we propose using approximate computing-based algorithms on Field Programmable Gate Arrays (FPGAs), which can be very useful in custom implementations for processing neural signals acquired from MEAs. The motivation is to provide better performance gains in the system area, power consumption, and latency associated with real-time processing at the cost of reduced output accuracy within certain bounds. Three types of approximate adders are explored in different configurations to develop the signal processing algorithms. The algorit...

References (38)

  1. Kandel, E.; Koester, J.; Mack, S.; Siegelbaum, S. Principles of Neural Science, Sixth Edition Ed.; McGraw-Hill Education: New York, NY, USA, 2021.
  2. Bavishi, S.; Rosenthal, J.; Bockbrader, M. Rehabilitation After Traumatic Brain Injury; Elsevier: Amsterdam, The Netherlands, 2019.
  3. Lu, Y.; Lyu, H.; Richardson, A.G.; Lucas, T.H.; Kuzum, D. Flexible Neural Electrode Array Based-on Porous Graphene for Cortical Microstimulation and Sensing. Sci. Rep. 2016, 6, 33526. [CrossRef] [PubMed]
  4. Natarajan, A. Biomedical Instrumentation and Measurements; PHI Learning Pvt. Ltd.: Delhi, India, 2015.
  5. Liu, X.; Zhang, M.; Hao, H.; Richardson, A.G.; Lucas, T.H.; Van der Spiegel, J. Wireless Sensor Brain Machine Interfaces for Closed-loop Neuroscience Studies. In Proceedings of the 2019 IEEE 13th International Conference on ASIC (ASICON), Chongqing, China, 29 October 2019-1 November 2019.
  6. Ghane-Motlagh, B.; Sawan, M. Design and Implementation Challenges of Microelectrode Arrays: A Review. Mater. Sci. Appl. 2013, 4, 483.
  7. Saggese, G.; Strollo, A.G.M. Low-Power Energy-Based Spike Detector ASIC for Implantable Multichannel BMIs. Electronics 2022, 11, 2943. [CrossRef]
  8. Kato, Y.; Matoba, Y.; Honda, K.; Ogawa, K.; Shimizu, K.; Maehara, M.; Fujiwara, A.; Odawara, A.; Yamane, C.; Kimizuka, N.; et al. High-Density and Large-Scale MEA System Featuring 236,880 Electrodes at 11.72 µm Pitch for Neuronal Net-work Analysis. In Proceedings of the 2020 IEEE Symposium on VLSI Circuits, Honolulu, HI, USA, 16-19 June 2020.
  9. Maccione, A.; Gandolfo, M.; Zordan, S.; Amin, H.; Di Marco, S.; Nieus, T.; Angotzi, G.N.; Berdondini, L. Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes. Brain Res. Bull. 2015, 119, 118-126. [CrossRef] [PubMed]
  10. Seu, G.P.; Angotzi, G.N.; Boi, F.; Raffo, L.; Berdondini, L.; Meloni, P. Exploiting All Programmable SoCs in Neural Signal Analysis: A Closed-Loop Control for Large-Scale CMOS Multielectrode Arrays. IEEE Trans. Biomed. Circuits Syst. 2018, 12, 839-850.
  11. Park, J.; Kim, G.; Jung, S.-D. A 128-channel FPGA based realtime spike-sorting bidirectional closed-loop neural in-terface system. IEEE Trans. Neural Syst. Rehabil. Eng. 2017, 25, 2227-2238. [CrossRef]
  12. Xu, Q.; Mytkowicz, T.; Kim, N.S. Approximate Computing: A Survey. IEEE Des. Test 2016, 33, 8-22. [CrossRef]
  13. Jiang, H.; Santiago FJ, H.; Mo, H.; Liu, L.; Ha, J. Approximate Arithmetic Circuits: A Survey, Characterization, and Recent Applications. Proc. IEEE 2020, 108, 2108-2135. [CrossRef]
  14. Baba, H.; Yang, T.; Inoue, M.; Tajima, K.; Ukezono, T.; Sato, T.A. Carry-Predicting Full Adder for Accuracy-Scalable Computing. In Proceedings of the 21st Workshop on Syn-thesis and System Integration of Mixed Information, Matsue, Japan, 26-27 March 2018.
  15. Shafique, M.; Ahmad, W.; Hafiz, R.; Henkel, J. A low latency generic accuracy configurable adder. In Proceedings of the 2015 52nd ACM/EDAC/IEEE Design Automation Conference, San Francisco, CA, USA, 7 June 2015.
  16. Gorantla, A.; Deepa, P. Design of approximate adders and multipliers for error tolerant image processing. Microprocess. Microsyst. 2020, 72, 102940.
  17. Newman, J.P.; Zeller-Townson, R.; Fong, M.F.; Arcot Desai, S.; Gross, R.E.; Potter, S.M. Closed-loop, multichannel experimentation using the open-source neurorighter electrophysiology platform. Front. Neural Circuits 2013, 6, 98. [CrossRef]
  18. Shulyzki, R.; Abdelhalim, K.; Bagheri, A.; Salam, M.T.; Florez, C.M.; Velazquez, J.L.; Carlen, P.L.; Genov, R. 320-channel active probe for high-resolution neuromonitoring and responsive neurostimulation. IEEE Trans. Biomed. Circuits Syst. 2015, 9, 34-39.
  19. Zhang, X.; Li, Q.; Chen, C.; Li, Y.; Zuo, F.; Liu, X.; Zhang, H.; Wang, X.; Liu, Y. A Fully Integrated 64-Channel Recording System for Extracellular Raw Neural Signals. Electronics 2021, 10, 2726. [CrossRef]
  20. Angotzi, G.N.; Boi, F.; Zordan, S.; Bonfanti, A.; Vato, A. A programmable closed-loop recording and stimulating wireless system for behaving small laboratory animals. Sci. Rep. 2014, 4, 5963. [CrossRef]
  21. Cong, P.; Karande, P.; Landes, J.; Corey, R.; Stanslaski, S.; Santa, W.; Jensen, R.; Pape, F.; Moran, D.; Denison, T. A 32-channel modular bi-directional neural interface system with embedded DSP for closed-loop operation. In Proceedings of the ESSCIRC 2014-40th European Solid State Circuits Conference (ESSCIRC), Venice Lido, Italy, 22-26 September 2014.
  22. Liu, X.; Zhang, M.; Richardson, A.G.; Lucas, T.H.; Spiegel, J.V.D. Design of a closed-loop, bidirectional brain ma-chine interface system with energy efficient neural feature extraction and PID control. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 729-742.
  23. Lee, H.-S.; Park, H.; Lee, H.-M. A Multi-Channel Neural Recording System with Adaptive Electrode Selection for High-Density Neural Interface. In Proceedings of the 2020 42nd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Montreal, QC, Canada, 20-24 July 2020.
  24. Liu, Z.; Tang, J.; Gao, B.; Li, X.; Yao, P.; Lin, Y.; Liu, D.; Hong, B.; Qian, H.; Wu, H. Multichannel parallel processing of neural signals in memristor arrays. Sci. Adv. 2020, 6, 47-97. [CrossRef]
  25. Muller, J.; Bakkum, D.; Hierlemann, A. Sub-millisecond closed-loop feedback stimulation between arbitrary sets of individual neurons. Front. Neural Circuits 2013, 6, 121. [CrossRef]
  26. Chowdhury, M.H.; Elyahoodayan, S.; Song, D.; Cheung, R.C.C. An FPGA-Based Neuron Activity Extraction Unit for a Wireless Neural Interface. Electronics 2020, 9, 1834. [CrossRef]
  27. Eggermont, J.J. Brain Oscillations, Synchrony and Plasticity; Academic Press: Cambridge, MA, USA, 2021.
  28. Madisetti, V.K. Digital Signal Processing Fundamentals; Taylor & Francis Group: London, UK, 2017.
  29. Rey, H.G.; Pedreira, C.; Quiroga, R.Q. Past, present and future of spike sorting techniques. Brain Res. Bull. 2015, 119, 106-117.
  30. Liu, Z.; Sun, Z.; Shi, G.; Wu, J.; Xie, X. A Novel Algorithm for Online Spike Detection; EDP Sciences: Ulis, France, 2018.
  31. Zhang, Z.; Constandinou, T. Adaptive spike detection and hardware optimization towards autonomous, high-channel-count BMIs. J. Neurosci. Methods 2021, 354, 109103. [CrossRef]
  32. Saggese, G.; Strollo, A.G.M. A Low Power 1024-Channels Spike Detector Using Latch-Based RAM for Real-Time Brain Silicon Interfaces. Electronics 2021, 10, 3068. [CrossRef]
  33. Saggese, G.; Tambaro, M.; Vallicelli, E.A.; Strollo, A.G.M.; Vassanelli, S.; Baschirotto, A.; Matteis, M.D. Comparison of Sneo-Based Neural Spike Detection Algorithms for Implantable Multi-Transistor Array Biosensors. Electronics 2021, 10, 410. [CrossRef]
  34. Huang, P.; Wang, C.; Liu, W.; Qiao, F.; Lombardi, F. A Hardware/Software Co-Design Methodology for Adaptive Approximate Computing in Clustering and ANN Learning. IEEE Open J. Comput. Soc. 2021, 2, 38-52. [CrossRef]
  35. Strollo AG, M.; Napoli, E.; De Caro, D.; Petra, N.; Saggese, G.; Di Meo, G. Approximate Multipliers Using Static Segmentation: Error Analysis and Improvements. IEEE Trans. Circuits Syst. 2022, 69, 2449-2462. [CrossRef]
  36. Guo, Y.; Sun, H.; Kimura, S. Design of Power and Area Efficient Lower-Part-OR Approximate Multiplier. In Proceedings of the IEEE Region 10 International Conference TENCON, Jeju, Republic of Korea, 28-31 October 2018.
  37. Masadeh, M.; Hasan, O.; Tahar, A.S. Comparative Study of Approximate Multipliers. In Proceedings of the 2018 on Great Lakes Symposium on VLSI, Chicago, IL, USA, 23-25 May 2018.
  38. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.