Contact manifolds and generalized complex structures
2005, Journal of Geometry and Physics
https://doi.org/10.1016/J.GEOMPHYS.2004.06.006Abstract
We give simple characterizations of contact 1-forms in terms of Dirac structures. We also relate normal almost contact structures to the theory of Dirac structures.
References (12)
- D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203 Birkhäuser, 2002.
- A. Bloch, P. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits, Differential geometry and control (Boulder, CO, 1997), 103-117,
- T. Courant, A. Weinstein, Beyond Poisson structures, Travaux en Cours 27 (1988), 39-49, Hermann, Paris.
- T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.
- J. Grabowski, G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A 36 (2003), 161-181.
- M. Gualtieri, Ph. D Thesis, Oxford, UK.
- N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), 281-308.
- D. Iglesias, J.C. Marrero, Generalized Lie bialgebroids and Ja- cobi structures, J. Geom. Phys. 40 (2001), 176-199.
- D. Iglesias, J.C. Marrero, Lie algebroid foliationsand E 1 (M )- Dirac structures, J. Phys. A 35 (2002), 4085-4104.
- A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie locales de Kirillov, J. Math. Pures Appl. 57 (1978), 453-488.
- Z.-J. Lu, A. Weinstein, P. Xu, Manin triples for Lie bialge- broids, J. Differential Geom. 45 (1997), 547-574
- A. Wade, Conformal Dirac Structures, Lett. Math. Phys. 53 (2000), 331-348.