Academia.eduAcademia.edu

Outline

Contact manifolds and generalized complex structures

2005, Journal of Geometry and Physics

https://doi.org/10.1016/J.GEOMPHYS.2004.06.006

Abstract

We give simple characterizations of contact 1-forms in terms of Dirac structures. We also relate normal almost contact structures to the theory of Dirac structures.

References (12)

  1. D. Blair, Riemannian geometry of contact and symplectic manifolds, Progress in Mathematics 203 Birkhäuser, 2002.
  2. A. Bloch, P. Crouch, Representations of Dirac structures on vector spaces and nonlinear L-C circuits, Differential geometry and control (Boulder, CO, 1997), 103-117,
  3. T. Courant, A. Weinstein, Beyond Poisson structures, Travaux en Cours 27 (1988), 39-49, Hermann, Paris.
  4. T. Courant, Dirac manifolds, Trans. Amer. Math. Soc. 319 (1990), 631-661.
  5. J. Grabowski, G. Marmo, The graded Jacobi algebras and (co)homology, J. Phys. A 36 (2003), 161-181.
  6. M. Gualtieri, Ph. D Thesis, Oxford, UK.
  7. N. Hitchin, Generalized Calabi-Yau manifolds, Q. J. Math. 54 (2003), 281-308.
  8. D. Iglesias, J.C. Marrero, Generalized Lie bialgebroids and Ja- cobi structures, J. Geom. Phys. 40 (2001), 176-199.
  9. D. Iglesias, J.C. Marrero, Lie algebroid foliationsand E 1 (M )- Dirac structures, J. Phys. A 35 (2002), 4085-4104.
  10. A. Lichnerowicz, Les variétés de Jacobi et leurs algèbres de Lie locales de Kirillov, J. Math. Pures Appl. 57 (1978), 453-488.
  11. Z.-J. Lu, A. Weinstein, P. Xu, Manin triples for Lie bialge- broids, J. Differential Geom. 45 (1997), 547-574
  12. A. Wade, Conformal Dirac Structures, Lett. Math. Phys. 53 (2000), 331-348.