Academia.eduAcademia.edu

Outline

q-Peano Kernel and its Applications

2015, arXiv: Classical Analysis and ODEs

Abstract

We introduce a q-analogue of the Peano kernel theorem by replacing ordinary derivatives and integrals by quantum derivatives and quantum integrals. In the limit q \to 1, the q-Peano kernel reduces to the classical Peano kernel. We also give applications to polynomial interpolation and construct examples in which classical remainder theory fails whereas q-Peano kernel works. Furthermore we derive a relation between q-B-splines and divided differences via the q-Peano kernel.

References (13)

  1. Al-Salam W.A., Verma, A., A Fractional Leibniz q-Formula, Pasific Journal of Mathematics, 60(2) (1972)
  2. Anastassiou G. A., Intelligent Mathematics: Computational Analysis. Springer-Verlag, Berlin Hei- delberg (2010)
  3. Budakc ¸ı G., Dis ¸ibüyük C ¸., Goldman R., Oruc ¸H., Extending Fundamental Formulas from Classical B-Splines to Quantum B-Splines, Journal of Computational and Applied Mathematics, 282, 17-33 (2015)
  4. Gauchman H., Integral Inequalities in q-Calculus, Computers and Mathematics with Applications, 47, 281-300 (2004)
  5. Hammerlin G.,Hoffmann K., Ewing J., Gehring F., Halmos P., Numerical Mathematics. Springer- Verlag, New York (1991)
  6. Ismail M.E.H., Stanton D., Applications of q-Taylor theorems, Journal of Computaional and Ap- plied Mathematics, 153, 259-272 (2003)
  7. Kac V., Cheung P., Quantum Calculus. Universitext Series, IX, Springer Verlag (2002)
  8. Pashaev O.K., Nalci S., q-analytic functions, fractals and generalized analytic functions, Journal of Physics A-Mathematical and Theoretical, 47(4), 045204 (2014)
  9. Phillips G.M., Interpolation and Approximation by Polynomials. Springer-Verlag, New York (2003)
  10. Powell M.J.D., Approximation Theory and Methods. Cambridge University Press (1981)
  11. Rajković P. M., Stanković M. S.,Marinković S. D., Mean value theorems in q-calculus, Proceedings of the 5th International Symposium on Mathematical Analysis and its Applications, Mat. Vesnik, 54, 3-4, 171-178 (2002)
  12. Simeonov P., Goldman R, Quantum B-splines, BIT Numerical Mathematics, Vol. 53, pp. 193-223 (2013)
  13. Tariboon J., Ntouyas S.K., Quantum integral inequalities on finite intervals, Journal of Inequalities and Applications, 2014:121 (2014)