G-Hypergroups: Hypergroups with a Group-Isomorphic Heart
2022, Mathematics
https://doi.org/10.3390/MATH10020240Abstract
Hypergroups can be subdivided into two large classes: those whose heart coincide with the entire hypergroup and those in which the heart is a proper sub-hypergroup. The latter class includes the family of 1-hypergroups, whose heart reduces to a singleton, and therefore is the trivial group. However, very little is known about hypergroups that are neither 1-hypergroups nor belong to the first class. The goal of this work is to take a first step in classifying G-hypergroups, that is, hypergroups whose heart is a nontrivial group. We introduce their main properties, with an emphasis on G-hypergroups whose the heart is a torsion group. We analyze the main properties of the stabilizers of group actions of the heart, which play an important role in the construction of multiplicative tables of G-hypergroups. Based on these results, we characterize the G-hypergroups that are of type U on the right or cogroups on the right. Finally, we present the hyperproduct tables of all G-hypergroups of ...
References (27)
- Massouros, C. (Ed.) Hypercompositional Algebra and Applications; MDPI: Basel, Switzerland, 2021.
- Comer, S. D. Polygroups derived from cogroups. J. Algebra 1984, 89, 394-405. [CrossRef]
- Haddad, L.; Sureau, Y. Les cogroupes et les D-hypergroupes. J. Algebra 1988, 108, 446-476. [CrossRef]
- Haddad, L.; Sureau, Y. Les cogroupes et la construction de Utumi. Pacific J. Math. 1990, 145, 17-58. [CrossRef]
- Sureau, Y. Hypergroupes de type C. Rend. Circ. Mat. Palermo 1991, 40, 421-437. [CrossRef]
- Gutan, M.; Sureau, Y. Hypergroupes de type C à petites partitions. Riv. Mat. Pura Appl. 1995, 16, 13-38.
- Koskas, H. Groupoïdes, demi-hypergroupes et hypergroupes. J. Math. Pures Appl. 1970, 49, 155-192.
- Freni, D. Une note sur le coeur d'un hypergroup et sur la clôture transitive β * de β. Riv. Mat. Pura Appl. 1991, 8, 153-156.
- Gutan, M. On the transitivity of the relation β in semihypergroups. Rend. Circ. Mat. Palermo 1996, 45, 189-200. [CrossRef]
- Leoreanu, V. On the heart of join spaces and of regular hypergroups. Riv. Mat. Pura Appl. 1995, 17, 133-142.
- Antampoufis, N.; Hošková-Mayerová, Š. A brief survey on the two different approaches of fundamental equivalence relations on hyperstructures. Ratio Math. 2017, 33, 47-60.
- Corsini, P.; Freni, D. On the heart of hypergroups. Math. Montisnigri 1993, 2, 21-27.
- Cristea, I. Complete hypergroups, 1-hypergroups and fuzzy sets. An. Stiin. Univ. Ovidius Constanta Ser. Mat. 2002, 10, 25-37.
- Corsini, P.; Cristea, I. Fuzzy sets and non complete 1-hypergroups. An. Stiint. Univ. Ovidius Constanta Ser. Mat. 2005, 13, 27-53.
- De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. On hypergroups with a β-class of finite height. Symmetry 2020, 12, 168. [CrossRef]
- De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. 1-hypergroups of small sizes. Mathematics 2021, 9, 108. [CrossRef]
- Corsini, P. Prolegomena of Hypergroup Theory; Aviani Editore: Tricesimo, Italy, 1993.
- Davvaz, B. Semihypergroup Theory; Academic Press: London, UK, 2016.
- Massouros, C.; Massouros, G. An overview of the foundations of the hypergroup theory. Mathematics 2021, 9, 1014. [CrossRef]
- Vougiouklis, T. Fundamental relations in hyperstructures. Bull. Greek Math. Soc. 1999, 42, 113-118.
- De Salvo, M.; Freni, D.; Lo Faro, G. Fully simple semihypergroups. J. Algebra 2014, 399, 358-377. [CrossRef]
- De Salvo, M.; Fasino, D.; Freni, D.; Lo Faro, G. Fully simple semihypergroups, transitive digraphs, and Sequence A000712. J. Algebra 2014, 415, 65-87. [CrossRef]
- Al Tahan, M.; Davvaz, B. On some properties of single power cyclic hypergroups and regular relations. J. Algebra Appl. 2017, 16, 1750214. [CrossRef]
- Novák, M.; Křehlík, Š.; Cristea, I. Cyclicity in EL-hypergroups. Symmetry 2018, 10, 611. [CrossRef]
- Freni, D. Structure des hypergroupes quotients et des hypergroupes de type U. Ann. Sci. Univ. Clermont-Ferrand II Math. 1984, 22, 51-77.
- Fasino, D.; Freni, D. Existence of proper semihypergroups of type U on the right. Discrete Math. 2007, 307, 2826-2836. [CrossRef]
- Freni, D. Minimal order semi-hypergroupes of type U on the right, II. J. Algebra 2011, 340, 77-89. [CrossRef]