Academia.eduAcademia.edu

Outline

Dynamic Pursuit with a Bio-inspired Neural Model

2005, Lecture Notes in Computer Science

https://doi.org/10.1007/11558484_36

Abstract

In this paper we present a bio-inspired connectionist model for visual perception of motion and its pursuit. It is organized in three stages: a causal spatio-temporal filtering of Gabor-like type, an antagonist inhibition mechanism and a densely interconnected neural population. These stages are inspired by the treatment of the primary visual cortex, middle temporal area and superior visual areas. This model has been evaluated on natural image sequences.

References (13)

  1. Frédéric Alexandre. Une modélisation fonctionnelle du cortex: la Colonne Cortical. Aspects visuels et moteurs. PhD thesis, Henri Poincaré, Nancy, France, 1990.
  2. Claudio Castellanos Sánchez, Bernard Girau, and Frédéric Alexandre. A connectionist ap- proach for visual perception of motion. In Leslie Smith, Amir Hussain, and Igor Aleksander, editors, Brain Inspired Cognitive Systems (BICS 2004), pages BIS3-1 1-7, Department of Computing Science and Mathematics, University of Stirling, Stirling FK9 4LA Scotland, United Kingdom, September 2004. International Computing Sciences Conferences (ICSC) Canada, and University of Stirling, Scotland and Imperial College, London, England.
  3. Hervé Frezza-Buet. Un modèle du cortex pour le comportement motivé d'un agent neu- romimétique autonome. PhD thesis, Henri Poincaré, Nancy, France, 1999.
  4. P. Hammond and J. Reck. Influence of velocity on directional tuning of complex cells in cat striate cortex for texture motion. Neuroscience Letters, 19:309-314, 1981.
  5. W. T. Newsome, M. S. Gizzi, and J. A. Movshon. Spatial and temporal properties of neurons in macaque mt. Investigative Ophtalmology and Visual Science Supplement, 24:106, 1983.
  6. Christopher Pack, Stephen Grossberg, and Ennio Mingolla. A neural model of smooth pur- suit control and motion perception by cortical area mst. Technical Report CAS/CNR-TR- 99-023, Department of Cognitive and Neural Systems and Center for Adaptive Systems, 677 Beacon St, Boston, MA 02215, September 2000.
  7. D. Pollen and S. Ronner. Phase relationships between adjacent simple cells in the visual cortex. Science, 212:1409-1411, 1981.
  8. N. Rougier and J. Vitay. Emergence of attention within a neural population. Accepted to Neural Networks, 2005.
  9. Eero P. Simoncelli and David J. Heeger. A model of neural responses in visual area mt. Vision Research, 38(5):743-761, 1998.
  10. J. G. Taylor. Neural 'bubble' dynamics in two dimensions: foundations. Biological Cyber- netics, 80(6):393-410, 1999.
  11. César Torres Huitzil, Bernard Girau, and Claudio Castellanos Sánchez. Digital implementa- tion of a bio-inspired neural model for motion estimation. In International Joint Conference on Neural Networks 2005, pages -, Montreal, Quebec, Canada, July 31-August 4, 2005, July 2005. International Neural Network Society and IEEE Computational Intelligence Society.
  12. J. Vitay, N. P. Rougier, and F. Alexandre. A distributed model of spatial visual attention. In S. Wermter and G. Palm, editors, Neural Learning for Intelligent Robotics. Springer-Verlag, 2005.
  13. Richard S. Zemel and Terrence J. Sejnowski. A model for encoding multiple object mo- tions and self-motion in area mst of primate visual cortex. The Journal of Neurosciences, 18(1):531-547, 1998.