Academia.eduAcademia.edu

Outline

Application of Graph Theory for Blockchain Technologies

https://doi.org/10.3390/MATH12081133

Abstract

This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY

References (99)

  1. Yli-Huumo, J.; Ko, D.; Choi, S.; Park, S.; Smolander, K. Where is current research on blockchain technology?-A systematic review. PLoS ONE 2016, 11, e0163477. [CrossRef] [PubMed]
  2. Sanka, A.; Cheung, R. A systematic review of blockchain scalability: Issues, solutions, analysis and future research. J. Netw. Comput. Appl. 2021, 195, 103232. [CrossRef]
  3. Barabási, A.; Albert, R. Emergence of scaling in random networks. Science 1999, 286, 509-512. [CrossRef]
  4. Easley, D.; Kleinberg, J. Networks, Crowds, and Markets: Reasoning about a Highly Connected World; Cambridge University Press: Cambridge, UK, 2010; Volume 1.
  5. Gangrade, A.; Agrawal, B.; Kumar, S.; Mansuri, A. A study of applications of graph colouring in various fields. Int. J. Stat. Appl. Math. 2022, 7, 2022. [CrossRef]
  6. Majeed, A.; Rauf, I. Graph theory: A comprehensive survey about graph theory applications in computer science and social networks. Inventions 2020, 5, 10. [CrossRef]
  7. Raza, H.; Sharma, S.K.; Azeem, M. On Domatic Number of Some Rotationally Symmetric Graphs. J. Math. 2023, 2023, 3816772.
  8. Ahmad, A.; Hasni, R.; Akhter, N.; Elahi, K. Analysis of distance-based topological polynomials associated with zero-divisor graphs. Comput. Mater. Contin. 2022, 70, 2898-2904. [CrossRef]
  9. Holmes, T.D.; Rothman, R.H.; Zimmerman, W.B. Graph theory applied to plasma chemical reaction engineering. Plasma Chem. Plasma Process. 2021, 41, 531-557. [CrossRef]
  10. El-Mesady, A.; Bazighifan, O. Construction of mutually orthogonal graph squares using novel product techniques. J. Math. 2022, 2022, 9722983. [CrossRef]
  11. Nithin, G.; Aslam, S.; Sathidevi, P.; Ameer, P.; Gopinath, S.; Radhakrishnan, K.; Parasuram, H. Localization of Epileptogenic Zone: A Graph Theoretical Approach. In Proceedings of the 2nd International Conference on Vision, Image and Signal Processing, Las Vegas, NV, USA, 27-29 August 2018; pp. 1-5.
  12. Nayana, P.; Iyer, R.R. An algorithm to find a dominating set that secures any connected graph G. In Proceedings of the 2022 IEEE 4th Ph.D. Colloquium on Emerging Domain Innovation and Technology for Society (Ph.D. EDITS), Bangalore, India, 4-5 November 2022; pp. 1-2.
  13. Thushara, A.; Amma, C.U.; John, A. Graph Theory-Based Brain Network Connectivity Analysis and Classification of Alzheimer's Disease. Int. J. Image Graph. 2023, 23, 2240006. [CrossRef]
  14. Jose, G.M.; N, G.K. A Contemporary Technique to Place PMU in an Electrical Power Network using Graph Theory. In Proceedings of the 2023 Fifteenth International Conference on Contemporary Computing, Noida, India, 3-5 August 2023; pp. 598-602.
  15. Nabiyev, V.; Çakiro glu, Ü.; Karal, H.; Erümit, A.K.; Ayça, Ç. Application of graph theory in an intelligent tutoring system for solving mathematical word problems. Eurasia J. Math. Sci. Technol. Educ. 2016, 12, 687-701.
  16. Wan, J.; Chen, H.; Li, T.; Sang, B.; Yuan, Z. Feature grouping and selection with graph theory in robust fuzzy rough approximation space. IEEE Trans. Fuzzy Syst. 2022, 31, 213-225. [CrossRef]
  17. Toppi, J.; Ciaramidaro, A.; Vogel, P.; Mattia, D.; Babiloni, F.; Siniatchkin, M.; Astolfi, L. Graph theory in brain-to-brain connectivity: A simulation study and an application to an EEG hyperscanning experiment. In Proceedings of the 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Milano, Italy, 25-29 August 2015; pp. 2211-2214.
  18. Kisku, D.R.; Gupta, P.; Sing, J.K. Applications of Graph Theory in Face Biometrics. In International Conference on Business Administration and Information Processing, Proceedings of the BAIP 2010: Information Processing and Management, Trivandrum, Kerala, India, 26-27 March 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 28-33.
  19. Bhattacharya, S.; Poray, J. Application of graph theory in bigdata environment. In Proceedings of the 2016 International Conference on Computer, Electrical & Communication Engineering (ICCECE), Kolkata, India, 16-17 December 2016; pp. 1-8.
  20. Yan, S.; Wei, W.; Rui, W.; Zhengyi, W. Application of Matrix Algorithm Based on Graph Theory in Real-time Fault Diagnosis Knowledge Perfection Detection of Spacecraft Telemetry Data. In Proceedings of the 2022 IEEE International Conference on Signal Processing, Communications and Computing (ICSPCC), Xi'an, China, 25-27 October 2022; pp. 1-6.
  21. Priyadarsini, P. A survey on some applications of graph theory in cryptography. J. Discret. Math. Sci. Cryptogr. 2015, 18, 209-217.
  22. Lahby, M. Enhancing modeling for network selection using graph theory in beyond 4g networks. Int. J. Bus. Data Commun. Netw. 2020, 16, 48-69. [CrossRef]
  23. Schizas, C.; Evans, F. APL and graph theory in dynamic systems analysis. IEE Proc.-Control Theory Appl. 1981, 3, 85-92. [CrossRef]
  24. Jovanović, N.; Zakić, A. Network simulation tools and spectral graph theory in teaching computer network. Comput. Appl. Eng. Educ. 2018, 26, 2084-2091. [CrossRef]
  25. Andrews, M.; Bhatnagar, S. Graph theory in microprogramming: An alternate approach to designing micro-code for micropro- cessing. Comput. Electr. Eng. 1980, 7, 175-183. [CrossRef]
  26. Yang, Z.X.; Ning, H.y.; Sun, J.Q.; Yang, J.B. Service portfolio optimization algorithm based on value model and graph theory in SOA. In Proceedings of the 2013 IEEE 4th International Conference on Software Engineering and Service Science, Beijing, China, 23-25 May 2013; pp. 64-67.
  27. Riaz, F.; Ali, K.M. Applications of graph theory in computer science. In Proceedings of the 2011 Third International Conference on Computational Intelligence, Communication Systems and Networks, Bali, Indonesia, 26-28 July 2011; pp. 142-145.
  28. Pavlova, N. Several Outlines of Graph Theory in Framework of MDA. In Advances in Information Systems Development: New Methods and Practice for the Networked Society; Springer: Berlin/Heidelberg, Germany, 2007; pp. 25-36.
  29. Chatain, J.; Varga, R.; Fayolle, V.; Kapur, M.; Sumner, R.W. Grounding graph theory in embodied concreteness with virtual reality. In Proceedings of the Seventeenth International Conference on Tangible, Embedded, and Embodied Interaction, Warsaw, Poland, 26 February-1 March 2023; pp. 1-13.
  30. Coufal, P.; Hubálovsk ỳ, Š.; Hubálovská, M. Application of basic graph theory in autonomous motion of robots. Mathematics 2021, 9, 919. [CrossRef]
  31. Doczkal, C.; Pous, D. Graph theory in Coq: Minors, treewidth, and isomorphisms. J. Autom. Reason. 2020, 64, 795-825. [CrossRef]
  32. Bowie, W.S. Applications of graph theory in computer systems. Int. J. Comput. Inf. Sci. 1976, 5, 9-31. [CrossRef]
  33. Erumit, A.K.; Nabiyev, V.; Cebi, A. Modeling of motion problems based on graph theory in maths. In Proceedings of the 2012 IV International Conference Problems of Cybernetics and Informatics (PCI), Baku, Azerbaijan, 12-14 September 2012; pp. 1-3.
  34. An, P.T.; Hai, N.N.; Van Hoai, T. The Role of Graph Theory in Solving Euclidean Shortest Path Problems in 2D and 3D. In Advances in Computer Science and Its Applications: CSA 2013; Springer: Berlin/Heidelberg, Germany, 2014; pp. 179-184.
  35. Qu, C.; Tao, M.; Yuan, R. A hypergraph-based blockchain model and application in internet of things-enabled smart homes. Sensors 2018, 18, 2784. [CrossRef] [PubMed]
  36. Tsoulias, K.; Palaiokrassas, G.; Fragkos, G.; Litke, A.; Varvarigou, T.A. A graph model based blockchain implementation for increasing performance and security in decentralized ledger systems. IEEE Access 2020, 8, 130952-130965. [CrossRef]
  37. Abay, N.C.; Akcora, C.G.; Gel, Y.R.; Kantarcioglu, M.; Islambekov, U.D.; Tian, Y.; Thuraisingham, B. Chainnet: Learning on blockchain graphs with topological features. In Proceedings of the 2019 IEEE International Conference on Data Mining (ICDM), Beijing, China, 8-11 November 2019; pp. 946-951.
  38. Shen, M.; Zhang, J.; Zhu, L.; Xu, K.; Du, X. Accurate decentralized application identification via encrypted traffic analysis using graph neural networks. IEEE Trans. Inf. Forensics Secur. 2021, 16, 2367-2380. [CrossRef]
  39. Liu, X.; Tang, Z.; Li, P.; Guo, S.; Fan, X.; Zhang, J. A graph learning based approach for identity inference in dapp platform blockchain. IEEE Trans. Emerg. Top. Comput. 2020, 10, 438-449. [CrossRef]
  40. Chung, F.R. Spectral Graph Theory; American Mathematical Society: Providence, RI, USA, 1997; Volume 92.
  41. Wang, X.; Zha, X.; Ni, W.; Liu, R.P.; Guo, Y.J.; Niu, X.; Zheng, K. Survey on blockchain for Internet of Things. Comput. Commun. 2019, 136, 10-29. [CrossRef]
  42. Jayabalasamy, G.; Koppu, S. High-performance Edwards curve aggregate signature (HECAS) for nonrepudiation in IoT-based applications built on the blockchain ecosystem. J. King Saud. Univ. Comput. Inf. Sci. 2022, 34, 9677-9687. [CrossRef]
  43. Guruprakash, J.; Koppu, S. EC-ElGamal and Genetic algorithm-based enhancement for lightweight scalable blockchain in IoT domain. IEEE Access 2020, 8, 141269-141281. [CrossRef]
  44. Khan, D.; Jung, L.T.; Hashmani, M.A. Systematic literature review of challenges in blockchain scalability. Appl. Sci. 2021, 11, 9372. [CrossRef]
  45. Gochhayat, S.; Shetty, S.; Mukkamala, R.; Foytik, P.; Kamhoua, G.; Njilla, L. Measuring decentrality in blockchain based systems. IEEE Access 2020, 8, 178372-178390. [CrossRef]
  46. Madine, M.; Salah, K.; Jayaraman, R.; Al-Hammadi, Y.; Arshad, J.; Yaqoob, I. appxchain: Application-level interoperability for blockchain networks. IEEE Access 2021, 9, 87777-87791. [CrossRef]
  47. Hu, X.; Islam, A.; Britz, T. Bounds on the closeness centrality of a graph. arXiv 2022, arXiv:2204.11283.
  48. Bazari, A.S.; Aggarwal, A.; Asif, W.; Lestas, M.; Rajarajan, M. Node criticality assessment in a blockchain network. In Proceedings of the 2nd Workshop on Blockchain-Enabled Networked Sensor, New York, NY, USA, 10 November 2019; pp. 22-27.
  49. Shahsavari, Y.; Zhang, K.; Talhi, C. Toward quantifying decentralization of blockchain networks with relay nodes. Front. Blockchain 2022, 5, 812957. [CrossRef]
  50. Bhavadharini, R.; Karthik, S. Blockchain enabled metaheuristic cluster based routing model for wireless networks. Comput. Syst. Sci. Eng. 2023, 44, 1233-1250. [CrossRef]
  51. Ezeh, C.; Ren, T.; Li, Z.; Yiqun, W.; Qu, Y. Multi-type node detection in network communities. Entropy 2019, 21, 1237. [CrossRef]
  52. Devillers, R. Articulation of transition systems and its application to Petri net synthesis. In Application and Theory of Petri Nets and Concurrency, Proceedings of the 40th International Conference, PETRI NETS 2019, Aachen, Germany, 23-28 June 2019; Proceedings 40; Springer: Berlin/Heidelberg, Germany, 2019; pp. 113-126.
  53. Chen, L.; Shan, S. Optimization of the trust propagation on supply chain network based on blockchain plus. J. Intell. Manag. Decis. 2022, 1, 17-27. [CrossRef]
  54. Giuntini, F.; Moraes, K.; Cazzolato, M.; Kirchner, L.; Reis, M.; Traina, A.; Campbell, A.; Ueyama, J. Modeling and assessing the temporal behavior of emotional and depressive user interactions on social networks. IEEE Access 2021, 9, 93182-93194. [CrossRef]
  55. Serrano, W. The blockchain random neural network in cybersecurity and the Internet of Things. In Artificial Intelligence Applications and Innovations, Proceedings of the 15th IFIP WG 12.5 International Conference, AIAI 2019, Hersonissos, Crete, Greece, 24-26 May 2019; Proceedings 15; Springer: Berlin/Heidelberg, Germany, 2019; pp. 50-63.
  56. Lahmadi, A.; Bertin, E.; Li, R. Brains 2020 special issue: Blockchain research and applications for innovative networks and services. Int. J. Netw. Manag. 2021, 32. [CrossRef]
  57. Li, C.; Palanisamy, B. Comparison of decentralization in dpos and pow blockchains. In Proceedings of the Blockchain, ICBC 2020, Honolulu, HI, USA, 18-20 September 2020; pp. 18-32. [CrossRef]
  58. Furno, A.; Faouzi, N.E.; Sharma, R.; Zimeo, E. Graph-based ahead monitoring of vulnerabilities in large dynamic transportation networks. PLoS ONE 2021, 16, e0248764. [CrossRef]
  59. Shinkar, S.V.; Thankachan, D. Scmbqa: Design of a customised scm-aware sidechaining model for qos enhancement under attack scenarios. Int. J. Recent Innov. Trends Comput. Commun. 2022, 10, 200-212. [CrossRef]
  60. Hashim, F.; Shuaib, K.; Sallabi, F. Medshard: Electronic health record sharing using blockchain sharding. Sustainability 2021, 13, 5889. [CrossRef]
  61. Casale-Brunet, S.; Ribeca, P.; Doyle, P.; Mattavelli, M. Networks of Ethereum Non-Fungible Tokens: A graph-based analysis of the ERC-721 ecosystem. In Proceedings of the 2021 IEEE International Conference on Blockchain (Blockchain), Melbourne, Australia, 6-8 December 2021; pp. 188-195.
  62. Tan, Y.; Wu, Z.; Liu, J.; Wu, J.; Zheng, Z.; Chen, T. Bubble or Not: Measurements, Analyses, and Findings on the Ethereum ERC721 and ERC1155 Non-fungible Token Ecosystem. arXiv 2023, arXiv:2301.01991.
  63. Kim, H.; Cui, J.; Jang, E.; Lee, C.; Lee, Y.; Chung, J.W.; Shin, S. DRAINCLoG: Detecting Rogue Accounts with Illegally-obtained NFTs using Classifiers Learned on Graphs. arXiv 2023, arXiv:2301.13577.
  64. Bustamante, P.; Cai, M.; Gomez, M.; Harris, C.; Krishnamurthy, P.; Law, W.; Madison, M.; Murtazashvili, I.; Murtazashvili, J.; Mylovanov, T.; et al. Government by code? blockchain applications to public sector governance. Front. Blockchain 2022, 5, 869665.
  65. Leonardos, N.; Leonardos, S.; Piliouras, G. Oceanic games: Centralization risks and incentives in blockchain mining. In Mathematical Research for Blockchain Economy, Proceedings of the 1st International Conference MARBLE 2019, Santorini, Greece, 6-9 May 2019; Springer: Berlin/Heidelberg, Germany, 2020; pp. 183-199. [CrossRef]
  66. Takaishi, T. Statistical properties and multifractality of Bitcoin. Phys. Stat. Mech. Its Appl. 2018, 506, 507-519. [CrossRef]
  67. Gilad, Y.; Hemo, R.; Micali, S.; Vlachos, G.; Zeldovich, N. Algorand: Scaling byzantine agreements for cryptocurrencies. In Proceedings of the 26th Symposium on Operating Systems Principles, Shanghai, China, 28-31 October 2017; pp. 51-68.
  68. Tao, B.; Ho, I.W.H.; Dai, H.N. Complex network analysis of the bitcoin blockchain network. In Proceedings of the 2021 IEEE International Symposium on Circuits and Systems (ISCAS), Daegu, Republic of Korea, 22-28 May 2021; pp. 1-5.
  69. Bock, T. Measuring and modeling group dynamics in open-source software development: A tensor decomposition approach. ACM Trans. Softw. Eng. Methodol. 2021, 31, 1-50. [CrossRef]
  70. Aslam, S.; Tošić, A.; Mrissa, M. Secure and privacy-aware blockchain design: Requirements, challenges and solutions. J. Cybersecur. Priv. 2021, 1, 164-194. [CrossRef]
  71. Xiao, Y.; Zhang, N.; Lou, W.; Hou, Y.T. A survey of distributed consensus protocols for blockchain networks. IEEE Commun. Surv. Tutor. 2020, 22, 1432-1465. [CrossRef]
  72. Cheng, J.; Xie, L.; Tang, X.; Xiong, N.; Liu, B. A survey of security threats and defense on Blockchain. Multimed. Tools Appl. 2021, 80, 30623-30652. [CrossRef]
  73. Averin, A.; Averina, O. Review of blockchain technology vulnerabilities and blockchain-system attacks. In Proceedings of the 2019 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon), Vladivostok, Russia, 1-4 October 2019; pp. 1-6.
  74. Saad, M.; Spaulding, J.; Njilla, L.; Kamhoua, C.; Shetty, S.; Nyang, D.; Mohaisen, D. Exploring the attack surface of blockchain: A comprehensive survey. IEEE Commun. Surv. Tutor. 2020, 22, 1977-2008. [CrossRef]
  75. Shrivas, M.K.; Dean, T.Y.; Brunda, S.S. The disruptive blockchain security threats and threat categorization. In Proceedings of the 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T), Raipur, India, 3-5 January 2020; pp. 327-338.
  76. Choi, J. Inferring the Hidden Cascade Infection over Erdös-Rényi (ER) Random Graph. Electronics 2021, 10, 1894. [CrossRef]
  77. Putz, B.; Pernul, G. Detecting blockchain security threats. In Proceedings of the 2020 IEEE International Conference on Blockchain (Blockchain), Rhodes Island, Greece, 2-6 November 2020; pp. 313-320.
  78. Dorri, A.; Roulin, C.; Pal, S.; Baalbaki, S.; Jurdak, R.; Kanhere, S.S. Device identification in blockchain-based internet of things. IEEE Internet Things J. 2022, 9, 24767-24776. [CrossRef]
  79. Paquet-Clouston, M.; Haslhofer, B.; Dupont, B. Ransomware payments in the bitcoin ecosystem. J. Cybersecur. 2019, 5, tyz003. [CrossRef]
  80. Rožman, N.; Corn, M.; Škulj, G.; Diaci, J.; Podržaj, P. Scalability solutions in blockchain-supported manufacturing: A survey. Stroj. Vestn. J. Mech. Eng. 2022, 68, 585-609. [CrossRef]
  81. Croman, K.; Decker, C.; Eyal, I.; Gencer, A.E.; Juels, A.; Kosba, A.; Miller, A.; Saxena, P.; Shi, E.; Gün Sirer, E.; et al. On Scaling Decentralized Blockchains: (A Position Paper). In International Conference on Financial Cryptography and Data Security, Proceedings of the FC 2016 International Workshops, BITCOIN, VOTING, and WAHC, Christ Church, Barbados, 26 February 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 106-125.
  82. Gervais, A.; Karame, G.O.; Wüst, K.; Glykantzis, V.; Ritzdorf, H.; Capkun, S. On the security and performance of proof of work blockchains. In Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, Vienna, Austria, 24-26 October 2016; pp. 3-16.
  83. Wang, Q.; Yu, J.; Chen, S.; Xiang, Y. SoK: Diving into DAG-based blockchain systems. arXiv 2020, arXiv:2012.06128.
  84. Maeng, S.; Essaid, M.; Lee, C.; Park, S.; Ju, H. Visualization of ethereum p2p network topology and peer properties. Int. J. Netw. Manag. 2021, 31, e2175. [CrossRef]
  85. Albshri, A.; Alzubaidi, A.; Awaji, B.; Solaiman, E. Blockchain simulators: A systematic mapping study. In Proceedings of the 2022 IEEE International Conference on Services Computing (SCC), Barcelona, Spain, 11-15 July 2022. [CrossRef]
  86. Alharby, M.; Moorsel, A. Blocksim: An extensible simulation tool for blockchain systems. Front. Blockchain 2020, 3, 28. [CrossRef]
  87. Skowro ński, R.; Brzezi ński, J. Spide: Sybil-proof, incentivized data exchange. Clust. Comput. 2021, 25, 2241-2270.
  88. Lin, Q.; Li, C.; Zhao, X.; Chen, X. Measuring decentralization in bitcoin and ethereum using multiple metrics and granularities. In Proceedings of the 2021 IEEE 37th International Conference on Data Engineering Workshops (ICDEW), Chania, Greece, 19-22 April 2021; pp. 80-87.
  89. Kang, J.; Xiong, Z.; Niyato, D.; Wang, P.; Ye, D.; Kim, D.I. Incentivizing consensus propagation in proof-of-stake based consortium blockchain networks. IEEE Wirel. Commun. Lett. 2019, 8, 157-160. [CrossRef]
  90. Rosa, E.; D'Angelo, G.; Ferretti, S. Agent-Based Simulation of Blockchains. In Methods and Applications for Modeling and Simulation of Complex Systems, Proceeding of the 19th Asia Simulation Conference, AsiaSim 2019, Singapore, 30 October-1 November 2019; Tan, G., Lehmann, A., Teo, Y.M., Cai, W., Eds.; Springer: Singapore, 2019; pp. 115-126.
  91. Liu, D.; Piccoli, F.; Chen, K.; Tang, A.; Fang, V. Nft wash trading detection. arXiv 2023, arXiv:2305.01543.
  92. Hasan, H.R.; Salah, K.; Battah, A.; Madine, M.; Yaqoob, I.; Jayaraman, R.; Omar, M. Incorporating registration, reputation, and incentivization into the nft ecosystem. IEEE Access 2022, 10, 76416-76433. [CrossRef]
  93. Sifat, I.; Tariq, S.A.; van Donselaar, D. Suspicious trading in nonfungible tokens (NFTs). Inf. Manag. 2024, 61, 103898. [CrossRef]
  94. Tariq, S.A.; Sifat, I. Suspicious trading in nonfungible tokens (nfts): Evidence from wash trading. SSRN Electron. J. 2022. [CrossRef]
  95. von Wachter, V.; Jensen, J.R.; Regner, F.; Ross, O. NFT Wash Trading: Quantifying suspicious behaviour in NFT markets. In International Conference on Financial Cryptography and Data Security, Proceedings of the FC 2022: Financial Cryptography and Data Security. FC 2022 International Workshops, CoDecFin, DeFi, Voting, WTSC, Grenada, Grenada, 6 May 2022; Springer: Berlin/Heidelberg, Germany, 2022; pp. 299-311.
  96. Hsieh, Y.; Vergne, J. The future of the web? The coordination and early-stage growth of decentralized platforms. Strateg. Manag. J. 2022, 44, 829-857. [CrossRef]
  97. Chen, Z.; Omote, K. Toward achieving anonymous nft trading. IEEE Access 2022, 10, 130166-130176. [CrossRef]
  98. Das, D.; Bose, P.; Ruaro, N.; Kruegel, C.; Vigna, G. Understanding security issues in the NFT ecosystem. In Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security, Los Angeles, CA, USA, 7-11 November 2022; pp. 667-681.
  99. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.