Academia.eduAcademia.edu

Outline

A Lagrangian perturbation theory for modify gravity

2017, arXiv (Cornell University)

Abstract

We present a formalism to compute Lagrangian displacement fields for a wide range of cosmologies in the context of perturbation theory up to third order. We emphasize the case of theories with scale dependent gravitational strengths, such as chameleons, but our formalism can be accommodated to other modified gravity theories. In the non-linear regime two qualitative features arise. One, as is well known, is that nonlinearities lead to a screening of the force mediated by the scalar field. The second is a consequence of the transformation of the Klein-Gordon equation from Eulerian to Lagrangian coordinates, producing frame-lagging terms that are important especially at large scales, and if not considered, the theory does not reduce to the ΛCDM model in that limit. We apply our formalism to compute the 1-loop power spectrum and the correlation function in f (R) gravity by using different resummation schemes. We further discuss the IR divergences of these formalisms.

References (114)

  1. E. Berti et al., Testing General Relativity with Present and Future Astrophysical Observations, Class. Quant. Grav. 32 (2015) 243001, [1501.07274].
  2. Supernova Cosmology Project collaboration, S. Perlmutter et al., Measurements of Omega and Lambda from 42 high redshift supernovae, Astrophys. J. 517 (1999) 565-586, [astro-ph/9812133].
  3. Supernova Search Team collaboration, A. G. Riess et al., Observational evidence from supernovae for an accelerating universe and a cosmological constant, Astron. J. 116 (1998) 1009-1038, [astro-ph/9805201].
  4. BOSS collaboration, F. Beutler et al., The clustering of galaxies in the completed SDSS-III Baryon Oscillation Spectroscopic Survey: baryon acoustic oscillations in the Fourier space, Mon. Not. Roy. Astron. Soc. 464 (2017) 3409-3430, [1607.03149].
  5. DES collaboration, M. Garcia-Fernandez et al., Weak lensing magnification in the Dark Energy Survey Science Verification Data, Submitted to: Mon. Not. Roy. Astron. Soc. (2016) , [1611.10326].
  6. DESI collaboration, A. Aghamousa et al., The DESI Experiment Part I: Science,Targeting, and Survey Design, 1611.00036.
  7. G. D. Racca et al., The Euclid mission design, Proc. SPIE Int. Soc. Opt. Eng. 9904 (2016) 0O, [1610.05508].
  8. LSST Science, LSST Project collaboration, P. A. Abell et al., LSST Science Book, Version 2.0, 0912.0201.
  9. Planck collaboration, P. A. R. Ade et al., Planck 2015 results. XIII. Cosmological parameters, 1502.01589.
  10. SDSS collaboration, M. Betoule et al., Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples, Astron. Astrophys. 568 (2014) A22, [1401.4064].
  11. S. Weinberg, The Cosmological Constant Problem, Rev. Mod. Phys. 61 (1989) 1-23.
  12. J. Martin, Everything You Always Wanted To Know About The Cosmological Constant Problem (But Were Afraid To Ask), Comptes Rendus Physique 13 (2012) 566-665, [1205.3365].
  13. B. Ratra and P. J. E. Peebles, Cosmological Consequences of a Rolling Homogeneous Scalar Field, Phys. Rev. D37 (1988) 3406.
  14. S. Tsujikawa, Dark energy: investigation and modeling, 1004.1493.
  15. E. Bertschinger, On the Growth of Perturbations as a Test of Dark Energy, Astrophys. J. 648 (2006) 797-806, [astro-ph/0604485].
  16. E. Bertschinger and P. Zukin, Distinguishing Modified Gravity from Dark Energy, Phys. Rev. D78 (2008) 024015, [0801.2431].
  17. J. Khoury, Theories of Dark Energy with Screening Mechanisms, 1011.5909.
  18. J. Khoury and A. Weltman, Chameleon fields: Awaiting surprises for tests of gravity in space, Phys. Rev. Lett. 93 (2004) 171104, [astro-ph/0309300].
  19. J. Khoury and A. Weltman, Chameleon cosmology, Phys. Rev. D69 (2004) 044026, [astro-ph/0309411].
  20. E. Babichev, C. Deffayet and R. Ziour, k-Mouflage gravity, Int. J. Mod. Phys. D18 (2009) 2147-2154, [0905.2943].
  21. A. I. Vainshtein, To the problem of nonvanishing gravitation mass, Phys. Lett. B39 (1972) 393-394.
  22. G.-B. Zhao, B. Li and K. Koyama, N-body Simulations for f(R) Gravity using a Self-adaptive Particle-Mesh Code, Phys. Rev. D83 (2011) 044007, [1011.1257].
  23. B. Li, W. A. Hellwing, K. Koyama, G.-B. Zhao, E. Jennings and C. M. Baugh, The non-linear matter and velocity power spectra in f(R) gravity, MNRAS 428 (Jan., 2013) 743-755, [1206.4317].
  24. E. Puchwein, M. Baldi and V. Springel, Modified Gravity-GADGET: A new code for cosmological hydrodynamical simulations of modified gravity models, Mon. Not. Roy. Astron. Soc. 436 (2013) 348, [1305.2418].
  25. C. Llinares, D. F. Mota and H. A. Winther, ISIS: a new N-body cosmological code with scalar fields based on RAMSES. Code presentation and application to the shapes of clusters, Astron. Astrophys. 562 (2014) A78, [1307.6748].
  26. L. A. Rizzo, F. Villaescusa-Navarro, P. Monaco, E. Munari, S. Borgani, E. Castorina et al., Simulating cosmologies beyond ΛCDM with PINOCCHIO, JCAP 1701 (2017) 008, [1610.07624].
  27. H. A. Winther et al., Modified Gravity N-body Code Comparison Project, Mon. Not. Roy. Astron. Soc. 454 (2015) 4208-4234, [1506.06384].
  28. H. A. Winther and P. G. Ferreira, Fast route to nonlinear clustering statistics in modified gravity theories, Phys. Rev. D91 (2015) 123507, [1403.6492].
  29. S. Tassev, M. Zaldarriaga and D. Eisenstein, Solving Large Scale Structure in Ten Easy Steps with COLA, JCAP 1306 (2013) 036, [1301.0322].
  30. G. Valogiannis and R. Bean, Efficient simulations of large scale structure in modified gravity cosmologies with comoving Lagrangian acceleration, 1612.06469.
  31. H. A. Winther, K. Koyama, M. Manera, B. S. Wright and G.-B. Zhao, COLA with scale-dependent growth: applications to screened modified gravity models, 1703.00879.
  32. V. Sahni and P. Coles, Approximation methods for nonlinear gravitational clustering, Phys. Rept. 262 (1995) 1-135, [astro-ph/9505005].
  33. F. Bernardeau, S. Colombi, E. Gaztañaga and R. Scoccimarro, Large-scale structure of the Universe and cosmological perturbation theory, PhysRep 367 (Sept., 2002) 1-248, [astro-ph/0112551].
  34. A. Cooray and R. K. Sheth, Halo models of large scale structure, Phys. Rept. 372 (2002) 1-129, [astro-ph/0206508].
  35. T. Clifton, P. G. Ferreira, A. Padilla and C. Skordis, Modified Gravity and Cosmology, Phys. Rept. 513 (2012) 1-189, [1106.2476].
  36. K. Koyama, Cosmological Tests of Modified Gravity, Rept. Prog. Phys. 79 (2016) 046902, [1504.04623].
  37. A. Joyce, L. Lombriser and F. Schmidt, Dark Energy Versus Modified Gravity, Ann. Rev. Nucl. Part. Sci. 66 (2016) 95-122, [1601.06133].
  38. Y. B. Zel'dovich, Gravitational instability: An approximate theory for large density perturbations., A&A 5 (1970) 84-89.
  39. T. Buchert, A class of solutions in Newtonian cosmology and the pancake theory, A&A 223 (1989) 9-24.
  40. F. Moutarde, J.-M. Alimi, F. R. Bouchet, R. Pellat and A. Ramani, Precollapse scale invariance in gravitational instability, ApJ 382 (Dec., 1991) 377-381.
  41. P. Catelan, Lagrangian dynamics in nonflat universes and nonlinear gravitational evolution, Mon. Not. Roy. Astron. Soc. 276 (1995) 115, [astro-ph/9406016].
  42. F. R. Bouchet, S. Colombi, E. Hivon and R. Juszkiewicz, Perturbative Lagrangian approach to gravitational instability., A&A 296 (Apr., 1995) 575-+, [astro-ph/9406013].
  43. A. N. Taylor and A. J. S. Hamilton, Non-linear cosmological power spectra in real and redshift space, MNRAS 282 (Oct., 1996) 767-778, [astro-ph/9604020].
  44. T. Matsubara, Resumming cosmological perturbations via the Lagrangian picture: One-loop results in real space and in redshift space, PRD 77 (Mar., 2008) 063530, [0711.2521].
  45. J. Carlson, B. Reid and M. White, Convolution Lagrangian perturbation theory for biased tracers, Mon. Not. Roy. Astron. Soc. 429 (2013) 1674, [1209.0780].
  46. N. S. Sugiyama, Using Lagrangian perturbation theory for precision cosmology, Astrophys. J. 788 (2014) 63, [1311.0725].
  47. Z. Vlah, U. Seljak and T. Baldauf, Lagrangian perturbation theory at one loop order: successes, failures, and improvements, Phys. Rev. D91 (2015) 023508, [1410.1617].
  48. T. Matsubara, Recursive Solutions of Lagrangian Perturbation Theory, Phys. Rev. D92 (2015) 023534, [1505.01481].
  49. R. Juszkiewicz, On the evolution of cosmological adiabatic perturbations in the weakly non-linear regime, MNRAS 197 (1981) 931-940, [http://mnras.oxfordjournals.org/content/197/4/931.full.pdf+html].
  50. E. T. Vishniac, Why weakly non-linear effects are small in a zero-pressure cosmology, MNRAS 203 (1983) 345-349, [http://mnras.oxfordjournals.org/content/203/2/345.full.pdf+html].
  51. J. N. Fry, The Galaxy correlation hierarchy in perturbation theory, Astrophys. J. 279 (1984) 499-510.
  52. M. H. Goroff, B. Grinstein, S. J. Rey and M. B. Wise, Coupling of Modes of Cosmological Mass Density Fluctuations, Astrophys. J. 311 (1986) 6-14.
  53. B. Jain and E. Bertschinger, Second order power spectrum and nonlinear evolution at high redshift, Astrophys. J. 431 (1994) 495, [astro-ph/9311070].
  54. J. Carlson, M. White and N. Padmanabhan, A critical look at cosmological perturbation theory techniques, Phys. Rev. D80 (2009) 043531, [0905.0479].
  55. P. McDonald, Dark matter clustering: a simple renormalization group approach, Phys. Rev. D75 (2007) 043514, [astro-ph/0606028].
  56. M. Crocce and R. Scoccimarro, Renormalized cosmological perturbation theory, Phys. Rev. D73 (2006) 063519, [astro-ph/0509418].
  57. A. Taruya and T. Hiramatsu, A Closure Theory for Non-linear Evolution of Cosmological Power Spectra, Astrophys. J. 674 (2008) 617, [0708.1367].
  58. M. Pietroni, Flowing with Time: a New Approach to Nonlinear Cosmological Perturbations, JCAP 0810 (2008) 036, [0806.0971].
  59. K. Koyama, A. Taruya and T. Hiramatsu, Nonlinear evolution of the matter power spectrum in modified theories of gravity, PRD 79 (June, 2009) 123512, [0902.0618].
  60. A. Taruya, K. Koyama, T. Hiramatsu and A. Oka, Beyond consistency test of gravity with redshift-space distortions at quasilinear scales, Phys. Rev. D89 (2014) 043509, [1309.6783].
  61. P. Brax and P. Valageas, Impact on the power spectrum of Screening in Modified Gravity Scenarios, Phys. Rev. D88 (2013) 023527, [1305.5647].
  62. A. Taruya, T. Nishimichi, F. Bernardeau, T. Hiramatsu and K. Koyama, Regularized cosmological power spectrum and correlation function in modified gravity models, Phys. Rev. D90 (2014) 123515, [1408.4232].
  63. A. Taruya, K. Koyama, T. Hiramatsu and A. Oka, Beyond consistency test of gravity with redshift-space distortions at quasilinear scales, PRD 89 (Feb., 2014) 043509, [1309.6783].
  64. E. Bellini and M. Zumalacarregui, Nonlinear evolution of the baryon acoustic oscillation scale in alternative theories of gravity, Phys. Rev. D92 (2015) 063522, [1505.03839].
  65. A. Taruya, Constructing perturbation theory kernels for large-scale structure in generalized cosmologies, Phys. Rev. D94 (2016) 023504, [1606.02168].
  66. B. Bose and K. Koyama, A Perturbative Approach to the Redshift Space Power Spectrum: Beyond the Standard Model, JCAP 1608 (2016) 032, [1606.02520].
  67. M. Fasiello and Z. Vlah, Screening in perturbative approaches to LSS, 1704.07552.
  68. B. Bose and K. Koyama, A Perturbative Approach to the Redshift Space Correlation Function: Beyond the Standard Model, 1705.09181.
  69. S. Tassev, Lagrangian or Eulerian; Real or Fourier? Not All Approaches to Large-Scale Structure Are Created Equal, JCAP 1406 (2014) 008, [1311.4884].
  70. W. Hu and I. Sawicki, Models of f(R) Cosmic Acceleration that Evade Solar-System Tests, Phys. Rev. D76 (2007) 064004, [0705.1158].
  71. B. Jain and E. Bertschinger, Self-similar Evolution of Gravitational Clustering: Is N = -1 Special?, ApJ 456 (Jan., 1996) 43, [astro-ph/9503025].
  72. R. Scoccimarro and J. Frieman, Loop corrections in nonlinear cosmological perturbation theory, Astrophys. J. Suppl. 105 (1996) 37, [astro-ph/9509047].
  73. M. Peloso and M. Pietroni, Galilean invariance and the consistency relation for the nonlinear squeezed bispectrum of large scale structure, JCAP 1305 (2013) 031, [1302.0223].
  74. J. J. M. Carrasco, S. Foreman, D. Green and L. Senatore, The 2-loop matter power spectrum and the IR-safe integrand, JCAP 1407 (2014) 056, [1304.4946].
  75. P. Creminelli, J. Norea, M. Simonovi and F. Vernizzi, Single-Field Consistency Relations of Large Scale Structure, JCAP 1312 (2013) 025, [1309.3557].
  76. B. S. Wright, H. A. Winther and K. Koyama, COLA with massive neutrinos, 1705.08165.
  77. P. G. Bergmann, Comments on the scalar tensor theory, Int. J. Theor. Phys. 1 (1968) 25-36.
  78. K. Nordtvedt, Jr., Post-Newtonian Metric for a General Class of Scalar-Tensor Gravitational Theories and Observational Consequences., ApJ 161 (Sept., 1970) 1059.
  79. R. V. Wagoner, Scalar-tensor theory and gravitational waves, Phys. Rev. D 1 (Jun, 1970) 3209-3216.
  80. H. A. Buchdahl, Non-linear Lagrangians and cosmological theory, MNRAS 150 (1970) 1.
  81. A. A. Starobinsky, A new type of isotropic cosmological models without singularity, Physics Letters B 91 (Mar., 1980) 99-102.
  82. J. D. Barrow and S. Cotsakis, Inflation and the conformal structure of higher-order gravity theories, Physics Letters B 214 (1988) 515 -518.
  83. K.-i. Maeda, Towards the einstein-hilbert action via conformal transformation, Phys. Rev. D 39 (May, 1989) 3159-3162.
  84. A. Joyce, B. Jain, J. Khoury and M. Trodden, Beyond the Cosmological Standard Model, Phys. Rept. 568 (2015) 1-98, [1407.0059].
  85. G. W. Horndeski, Second-order scalar-tensor field equations in a four-dimensional space, Int. J. Theor. Phys. 10 (1974) 363-384.
  86. K. Hinterbichler and J. Khoury, Screening long-range forces through local symmetry restoration, Phys. Rev. Lett. 104 (Jun, 2010) 231301.
  87. M. Pietroni, Dark energy condensation, Phys. Rev. D 72 (Aug, 2005) 043535.
  88. K. A. Olive and M. Pospelov, Environmental dependence of masses and coupling constants, Phys. Rev. D 77 (Feb, 2008) 043524.
  89. T. Damour and A. Polyakov, The string dilation and a least coupling principle, Nuclear Physics B 423 (1994) 532 -558.
  90. P. Brax, C. van de Bruck, A.-C. Davis, B. Li and D. J. Shaw, Nonlinear structure formation with the environmentally dependent dilaton, Phys. Rev. D 83 (May, 2011) 104026.
  91. E. Babichev, C. Deffayet and G. Esposito-Farèse, Improving relativistic modified newtonian dynamics with galileon k-mouflage, Phys. Rev. D 84 (Sep, 2011) 061502.
  92. I. Sawicki and E. Bellini, Limits of quasistatic approximation in modified-gravity cosmologies, Phys. Rev. D 92 (Oct, 2015) 084061.
  93. J. Noller, F. von Braun-Bates and P. G. Ferreira, Relativistic scalar fields and the quasistatic approximation in theories of modified gravity, Phys. Rev. D89 (2014) 023521, [1310.3266].
  94. S. Bose, W. A. Hellwing and B. Li, Testing the quasi-static approximation in f (R) gravity simulations, JCAP 1502 (2015) 034, [1411.6128].
  95. S. Capozziello, Curvature quintessence, Int. J. Mod. Phys. D11 (2002) 483-492, [gr-qc/0201033].
  96. S. M. Carroll, V. Duvvuri, M. Trodden and M. S. Turner, Is cosmic speed -up due to new gravitational physics?, Phys. Rev. D70 (2004) 043528, [astro-ph/0306438].
  97. G. Magnano and L. M. Sokolowski, On physical equivalence between nonlinear gravity theories and a general relativistic selfgravitating scalar field, Phys. Rev. D50 (1994) 5039-5059, [gr-qc/9312008].
  98. A. Aviles, Dark matter dispersion tensor in perturbation theory, Phys. Rev. D93 (2016) 063517, [1512.07198].
  99. D. J. Heath, The growth of density perturbations in zero pressure Friedmann-Lemaitre universes, MNRAS 179 (May, 1977) 351-358.
  100. G. Hinshaw, D. Larson, E. Komatsu, D. N. Spergel, C. L. Bennett, J. Dunkley et al., Nine-year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Parameter Results, ApJS 208 (Oct., 2013) 19, [1212.5226].
  101. S. Lee, Lagrangian Perturbation Theory : Exact One-Loop Power Spectrum in General Dark Energy Models, Eur. Phys. J. C74 (2014) 3146, [1404.3813].
  102. M. McQuinn and M. White, Cosmological perturbation theory in 1+1 dimensions, 1502.07389.
  103. M. White, The Zel'dovich approximation, MNRAS 439 (Apr., 2014) 3630-3640, [1401.5466].
  104. G. Cusin, V. Tansella and R. Durrer, Vorticity generation in the Universe: A perturbative approach, Phys. Rev. D95 (2017) 063527, [1612.00783].
  105. A. Lewis, A. Challinor and A. Lasenby, Efficient computation of CMB anisotropies in closed FRW models, Astrophys. J. 538 (2000) 473-476, [astro-ph/9911177].
  106. A. J. S. Hamilton, Uncorrelated modes of the nonlinear power spectrum, Mon. Not. Roy. Astron. Soc. 312 (2000) 257-284, [astro-ph/9905191].
  107. Z. Vlah, E. Castorina and M. White, The Gaussian streaming model and convolution Lagrangian effective field theory, JCAP 1612 (2016) 007, [1609.02908].
  108. Z. Vlah, M. White and A. Aviles, A Lagrangian effective field theory, JCAP 1509 (2015) 014, [1506.05264].
  109. A. Hojjati, A. Plahn, A. Zucca, L. Pogosian, P. Brax, A.-C. Davis et al., Searching for scalar gravitational interactions in current and future cosmological data, Phys. Rev. D93 (2016) 043531, [1511.05962].
  110. B. Li, G.-B. Zhao, R. Teyssier and K. Koyama, ECOSMOG: An Efficient Code for Simulating Modified Gravity, JCAP 1201 (2012) 051, [1110.1379].
  111. E. T. Vishniac, Why weakly non-linear effects are small in a zero-pressure cosmology, MNRAS 203 (Apr., 1983) 345-349.
  112. L. Hui, A. Nicolis and C. Stubbs, Equivalence Principle Implications of Modified Gravity Models, Phys. Rev. D80 (2009) 104002, [0905.2966].
  113. P. Valageas, Kinematic consistency relations of large-scale structures, Phys. Rev. D89 (2014) 083534, [1311.1236].
  114. T. Matsubara, Nonlinear perturbation theory with halo bias and redshift-space distortions via the Lagrangian picture, Phys. Rev. D78 (2008) 083519, [0807.1733].