Enhancing Causal Estimation through Unlabeled Offline Data
2022 7th International Conference on Frontiers of Signal Processing (ICFSP)
https://doi.org/10.1109/ICFSP55781.2022.9924647Abstract
Consider a situation where a new patient arrives in the Intensive Care Unit (ICU) and is monitored by multiple sensors. We wish to assess relevant unmeasured physiological variables (e.g., cardiac
References (35)
- Ambrogioni, L., Güc ¸lü, U., Maris, E., and van Gerven, M. Estimating nonlinear dynamics with the convnet smoother. arXiv preprint arXiv:1702.05243, 2017.
- Anderson, B. D. and Moore, J. B. Optimal filtering. Courier Corporation, 2012.
- Bayat, A., Pomplun, M., and Tran, D. A. A study on hu- man activity recognition using accelerometer data from smartphones. Procedia Computer Science, 34:450-457, 2014.
- Bock, M., Hölzemann, A., Moeller, M., and Van Laerhoven, K. Improving deep learning for har with shallow lstms. In 2021 International Symposium on Wearable Computers, pp. 7-12, 2021.
- Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex optimization. Cambridge university press, 2004. doi: 10.1017/CBO9780511804441.
- Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and Elhadad, N. Intelligible models for healthcare: Predict- ing pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD international con- ference on knowledge discovery and data mining, pp. 1721-1730, 2015.
- Casale, P., Pujol, O., and Radeva, P. Human activity recog- nition from data using a wearable device. In Iberian conference on pattern recognition and image analysis, pp. 289-296. Springer, 2011.
- Dey, S., Roy, N., Xu, W., Choudhury, R. R., and Nelakuditi, S. Accelprint: Imperfections of accelerometers make smartphones trackable. In NDSS. Citeseer, 2014.
- Hassibi, B., Sayed, A. H., and Kailath, T. Indefinite- Quadratic estimation and control: a unified approach to H 2 and H ∞ theories. SIAM, 1999. doi: 10.1137/1. 9781611970760.
- Ignatov, A. Real-time human activity recognition from accelerometer data using convolutional neural networks. Applied Soft Computing, 62:915-922, 2018.
- Karl, M., Soelch, M., Bayer, J., and Van der Smagt, P. Deep variational bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint arXiv:1605.06432, 2016.
- Keener, J. and Sneyd, J. Mathematical Physiology. Springer- Verlag, Berlin, Heidelberg, 1998. ISBN 0-387-98381-3.
- Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
- Krishnan, R., Shalit, U., and Sontag, D. Structured inference networks for nonlinear state space models. In Proceed- ings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.
- Maldonado, S., López, J., and Iturriaga, A. Out-of-time cross-validation strategies for classification in the pres- ence of dataset shift. Applied Intelligence, pp. 1-14, 2021.
- Merry, K. and Bettinger, P. Smartphone gps accuracy study in an urban environment. PloS one, 14(7):e0219890, 2019.
- Mirkin, L. On the h∞ fixed-lag smoothing: How to exploit the information preview. Automatica, 39(8):1495-1504, 2003. doi: 10.1016/s0005-1098(03)00141-9.
- Mirkin, L. and Tadmor, G. On geometric and analytic constraints in the H ∞ fixed-lag smoothing. IEEE Trans- actions on Automatic Control, 52(8):1514-1519, 2007. doi: 10.1109/TAC.2007.902772.
- Ni, X., Revach, G., Shlezinger, N., van Sloun, R. J., and El- dar, Y. C. Rtsnet: Deep learning aided kalman smoothing. arXiv preprint arXiv:2110.04717, 2021.
- Ogiso, M. and Yomogida, K. Estimation of relative source locations from seismic amplitude: application to earth- quakes and tremors at meakandake volcano, eastern hokkaido, japan. Earth, Planets and Space, 73(1):1-14, 2021. doi: 10.21203/rs.3.rs-95632/v1.
- Oppenheim, A. V. and Schafer, R. W. Digital signal process- ing(book). Research supported by the Massachusetts Institute of Technology, Bell Telephone Laboratories, and Guggenheim Foundation. Englewood Cliffs, N. J., Prentice-Hall, Inc., 1975. 598 p, 1975.
- Ordóñez, F. J. and Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1):115, 2016.
- Park, C., Awadalla, A., Kohno, T., and Patel, S. Reliable and trustworthy machine learning for health using dataset shift detection. Advances in Neural Information Process- ing Systems, 34, 2021.
- Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. Dataset shift in machine learning. Mit Press, 2008.
- Ren, K., Qin, Z., and Ba, Z. Toward hardware-rooted smart- phone authentication. IEEE Wireless Communications, 26 (1):114-119, 2019. doi: 10.1109/MWC.2018.1700365.
- Simon, D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006. doi: 10.1002/0470045345.
- Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjaergaard, M. B., Dey, A., Sonne, T., and Jensen, M. M. Smart devices are different: Assessing and mitigatingmo- bile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM conference on embedded networked sensor systems, pp. 127-140, 2015.
- Subbaswamy, A. and Saria, S. From development to deploy- ment: dataset shift, causality, and shift-stable models in health ai. Biostatistics, 21(2):345-352, 2020.
- Subbaswamy, A., Schulam, P., and Saria, S. Preventing failures due to dataset shift: Learning predictive models that transport. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3118-3127. PMLR, 2019.
- Subbaswamy, A., Adams, R., and Saria, S. Evaluating model robustness and stability to dataset shift. In tional Conference on Artificial Intelligence and Statistics, pp. 2611-2619. PMLR, 2021.
- Yaesh, I. and Shaked, U. A transfer function approach to the problems of discrete-time systems: H/sub infinity/- optimal linear control and filtering. IEEE Transactions on Automatic Control, 36(11):1264-1271, 1991. doi: 10.1109/9.100935.
- Zames, G. Feedback and optimal sensitivity: Model ref- erence transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on automatic control, 26(2):301-320, 1981. doi: 10.1109/tac.1981. 1102603.
- Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Ti- tano, J. J., and Oermann, E. K. Variable generalization performance of a deep learning model to detect pneumo- nia in chest radiographs: a cross-sectional study. PLoS medicine, 15(11):e1002683, 2018.
- Zenker, S., Rubin, J., and Clermont, G. From inverse prob- lems in mathematical physiology to quantitative differen- tial diagnoses. PLoS computational biology, 3(11):e204, 2007.
- Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into Deep Learning. 2020. https://d2l.ai.