Academia.eduAcademia.edu

Outline

Enhancing Causal Estimation through Unlabeled Offline Data

2022 7th International Conference on Frontiers of Signal Processing (ICFSP)

https://doi.org/10.1109/ICFSP55781.2022.9924647

Abstract

Consider a situation where a new patient arrives in the Intensive Care Unit (ICU) and is monitored by multiple sensors. We wish to assess relevant unmeasured physiological variables (e.g., cardiac

References (35)

  1. Ambrogioni, L., Güc ¸lü, U., Maris, E., and van Gerven, M. Estimating nonlinear dynamics with the convnet smoother. arXiv preprint arXiv:1702.05243, 2017.
  2. Anderson, B. D. and Moore, J. B. Optimal filtering. Courier Corporation, 2012.
  3. Bayat, A., Pomplun, M., and Tran, D. A. A study on hu- man activity recognition using accelerometer data from smartphones. Procedia Computer Science, 34:450-457, 2014.
  4. Bock, M., Hölzemann, A., Moeller, M., and Van Laerhoven, K. Improving deep learning for har with shallow lstms. In 2021 International Symposium on Wearable Computers, pp. 7-12, 2021.
  5. Boyd, S., Boyd, S. P., and Vandenberghe, L. Convex optimization. Cambridge university press, 2004. doi: 10.1017/CBO9780511804441.
  6. Caruana, R., Lou, Y., Gehrke, J., Koch, P., Sturm, M., and Elhadad, N. Intelligible models for healthcare: Predict- ing pneumonia risk and hospital 30-day readmission. In Proceedings of the 21th ACM SIGKDD international con- ference on knowledge discovery and data mining, pp. 1721-1730, 2015.
  7. Casale, P., Pujol, O., and Radeva, P. Human activity recog- nition from data using a wearable device. In Iberian conference on pattern recognition and image analysis, pp. 289-296. Springer, 2011.
  8. Dey, S., Roy, N., Xu, W., Choudhury, R. R., and Nelakuditi, S. Accelprint: Imperfections of accelerometers make smartphones trackable. In NDSS. Citeseer, 2014.
  9. Hassibi, B., Sayed, A. H., and Kailath, T. Indefinite- Quadratic estimation and control: a unified approach to H 2 and H ∞ theories. SIAM, 1999. doi: 10.1137/1. 9781611970760.
  10. Ignatov, A. Real-time human activity recognition from accelerometer data using convolutional neural networks. Applied Soft Computing, 62:915-922, 2018.
  11. Karl, M., Soelch, M., Bayer, J., and Van der Smagt, P. Deep variational bayes filters: Unsupervised learning of state space models from raw data. arXiv preprint arXiv:1605.06432, 2016.
  12. Keener, J. and Sneyd, J. Mathematical Physiology. Springer- Verlag, Berlin, Heidelberg, 1998. ISBN 0-387-98381-3.
  13. Kingma, D. P. and Ba, J. Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980, 2014.
  14. Krishnan, R., Shalit, U., and Sontag, D. Structured inference networks for nonlinear state space models. In Proceed- ings of the AAAI Conference on Artificial Intelligence, volume 31, 2017.
  15. Maldonado, S., López, J., and Iturriaga, A. Out-of-time cross-validation strategies for classification in the pres- ence of dataset shift. Applied Intelligence, pp. 1-14, 2021.
  16. Merry, K. and Bettinger, P. Smartphone gps accuracy study in an urban environment. PloS one, 14(7):e0219890, 2019.
  17. Mirkin, L. On the h∞ fixed-lag smoothing: How to exploit the information preview. Automatica, 39(8):1495-1504, 2003. doi: 10.1016/s0005-1098(03)00141-9.
  18. Mirkin, L. and Tadmor, G. On geometric and analytic constraints in the H ∞ fixed-lag smoothing. IEEE Trans- actions on Automatic Control, 52(8):1514-1519, 2007. doi: 10.1109/TAC.2007.902772.
  19. Ni, X., Revach, G., Shlezinger, N., van Sloun, R. J., and El- dar, Y. C. Rtsnet: Deep learning aided kalman smoothing. arXiv preprint arXiv:2110.04717, 2021.
  20. Ogiso, M. and Yomogida, K. Estimation of relative source locations from seismic amplitude: application to earth- quakes and tremors at meakandake volcano, eastern hokkaido, japan. Earth, Planets and Space, 73(1):1-14, 2021. doi: 10.21203/rs.3.rs-95632/v1.
  21. Oppenheim, A. V. and Schafer, R. W. Digital signal process- ing(book). Research supported by the Massachusetts Institute of Technology, Bell Telephone Laboratories, and Guggenheim Foundation. Englewood Cliffs, N. J., Prentice-Hall, Inc., 1975. 598 p, 1975.
  22. Ordóñez, F. J. and Roggen, D. Deep convolutional and lstm recurrent neural networks for multimodal wearable activity recognition. Sensors, 16(1):115, 2016.
  23. Park, C., Awadalla, A., Kohno, T., and Patel, S. Reliable and trustworthy machine learning for health using dataset shift detection. Advances in Neural Information Process- ing Systems, 34, 2021.
  24. Quiñonero-Candela, J., Sugiyama, M., Schwaighofer, A., and Lawrence, N. D. Dataset shift in machine learning. Mit Press, 2008.
  25. Ren, K., Qin, Z., and Ba, Z. Toward hardware-rooted smart- phone authentication. IEEE Wireless Communications, 26 (1):114-119, 2019. doi: 10.1109/MWC.2018.1700365.
  26. Simon, D. Optimal state estimation: Kalman, H infinity, and nonlinear approaches. John Wiley & Sons, 2006. doi: 10.1002/0470045345.
  27. Stisen, A., Blunck, H., Bhattacharya, S., Prentow, T. S., Kjaergaard, M. B., Dey, A., Sonne, T., and Jensen, M. M. Smart devices are different: Assessing and mitigatingmo- bile sensing heterogeneities for activity recognition. In Proceedings of the 13th ACM conference on embedded networked sensor systems, pp. 127-140, 2015.
  28. Subbaswamy, A. and Saria, S. From development to deploy- ment: dataset shift, causality, and shift-stable models in health ai. Biostatistics, 21(2):345-352, 2020.
  29. Subbaswamy, A., Schulam, P., and Saria, S. Preventing failures due to dataset shift: Learning predictive models that transport. In The 22nd International Conference on Artificial Intelligence and Statistics, pp. 3118-3127. PMLR, 2019.
  30. Subbaswamy, A., Adams, R., and Saria, S. Evaluating model robustness and stability to dataset shift. In tional Conference on Artificial Intelligence and Statistics, pp. 2611-2619. PMLR, 2021.
  31. Yaesh, I. and Shaked, U. A transfer function approach to the problems of discrete-time systems: H/sub infinity/- optimal linear control and filtering. IEEE Transactions on Automatic Control, 36(11):1264-1271, 1991. doi: 10.1109/9.100935.
  32. Zames, G. Feedback and optimal sensitivity: Model ref- erence transformations, multiplicative seminorms, and approximate inverses. IEEE Transactions on automatic control, 26(2):301-320, 1981. doi: 10.1109/tac.1981. 1102603.
  33. Zech, J. R., Badgeley, M. A., Liu, M., Costa, A. B., Ti- tano, J. J., and Oermann, E. K. Variable generalization performance of a deep learning model to detect pneumo- nia in chest radiographs: a cross-sectional study. PLoS medicine, 15(11):e1002683, 2018.
  34. Zenker, S., Rubin, J., and Clermont, G. From inverse prob- lems in mathematical physiology to quantitative differen- tial diagnoses. PLoS computational biology, 3(11):e204, 2007.
  35. Zhang, A., Lipton, Z. C., Li, M., and Smola, A. J. Dive into Deep Learning. 2020. https://d2l.ai.