Academia.eduAcademia.edu

Outline

A Simplified Silty Sand Model

https://doi.org/10.3390/APP13148241

Abstract

A unified critical state model has been developed for both clean sand and silty sand using the modified Cam-clay model (MCC). The main feature of the proposed model is a new critical state line equation in the e-ln(p) plane that is capable of handling both straight and curved test results. With this feature, the error in calculating plastic volumetric strain is eliminated in theory. Another crucial feature of the model is the transformed stress tensor based on the SMP (spatially mobilized plane) criterion, which takes into account the proper shear yield and failure of soil under three-dimensional stresses. Additionally, the proposed model applies the intergranular void ratio with the fines influence factor for silty sand. Only eight soil parameters are required for clean sand, and a total number of twelve soil parameters are needed for silty sand.

References (46)

  1. Zhao, M.; Xu, L.; Huang, J.; Du, X.; Li, H. Analytical solutions of the tunnels under the fault creeping by elastic foundation beam model with considering tangential interaction. Soil Dyn. Earthq. Eng. 2023, 172, 108047-108057. [CrossRef]
  2. Huang, Y.; Zhao, M.; Wang, P.; Cheng, X.; Du, X. An analytical solution of a horizontally vibrating pile considering water-pile-soil interaction on viscoelastic half-space. Ocean Eng. 2022, 260, 111959-111978. [CrossRef]
  3. Zhang, M.; Lu, A.; Ma, Y.; Sha, X. Analytical solution for stress and displacement of a finite thickness soil layer subjected to strip footing. Appl. Math. Modell. 2022, 108, 553-566. [CrossRef]
  4. Chen, C.; Wang, Z.; Wu, W.; Wen, M.; Yao, W. Semi-Analytical Solution for the Vertical Vibration of a Single Pile Embedded in a Frozen Poroelastic Half-Space. Appl. Sci. 2023, 13, 1508-1522. [CrossRef]
  5. Wu, W.; Wang, Z.; Zhang, Y.; El Naggar, M.H.; Wu, T.; Wen, M. Semi-analytical solution for negative skin friction development on deep foundations in coastal reclamation areas. Int. J. Mech. Sci. 2023, 241, 107981-108001. [CrossRef]
  6. Rehman, Z.U.; Zhang, G. Three-dimensional elasto-plastic damage model for gravelly soil-structure interface considering the shear coupling effect. Comput. Geotech. 2021, 129, 103868-103882. [CrossRef]
  7. Galliková, Z.; Rehman, Z.U. Appraisal of the hypoplastic model for the numerical prediction of high-rise building settlement in Neogene clay based on real-scale monitoring data. J. Build. Eng. 2022, 50, 104152-104170. [CrossRef]
  8. Hakro, M.R.; Kumar, A.; Almani, Z.; Ali, M.; Aslam, F.; Fediuk, R.; Klyuev, S.; Klyuev, A.; Sabitov, L. Numerical Analysis of Piled-Raft Foundations on Multi-Layer Soil Considering Settlement and Swelling. Buildings 2022, 12, 356-378. [CrossRef]
  9. Lashkari, A. Recommendations for extension and re-calibration of an existing sand constitutive model taking into account varying non-plastic fines content. Soil Dyn. Earthq. Eng. 2014, 61-62, 212-238. [CrossRef]
  10. Roscoe, K.H.; Burland, J.B. On the generalised stress-strain behaviour of 'wet' clay. In Engineering Plasticity; Heyman, J., Leckie, F.A., Eds.; Cambridge University Press: Cambridge, UK, 1968; pp. 535-609.
  11. Miura, N.; Murata, H.; Yasufuku, N. Stress-strain characteristics of sand in a particle-crushing region. Soils Found. 1984, 24, 77-89.
  12. Wong, T.T.; Morgenstern, N.R.; Sego, D.C. A constitutive model for broken ice. Cold Reg. Sci. Technol. 1990, 17, 241-252. [CrossRef]
  13. Matsuoka, H.; Yao, Y.P.; Sun, D.A. The Cam-Clay Models Revised by the SMP Criterion. Soils Found. 1999, 39, 81-95. [CrossRef]
  14. Yao, Y.P.; Sun, D.A.; Luo, T.A. Critical state model for sands dependent on stress and density. Int. J. Numer. Anal. Methods Geomech. 2004, 28, 323-337. [CrossRef]
  15. Yao, Y.P.; Sun, D.A.; Matsuoka, H. A unified constitutive model for both clay and sand with hardening parameter independent on stress path. Comput. Geotech. 2008, 35, 210-222. [CrossRef]
  16. Suebsuk, J.; Horpibulsuk, S.; Liu, M.D. A critical state model for overconsolidated structured clays. Comput. Geotech. 2011, 38, 648-658. [CrossRef]
  17. Cao, L.F.; Teh, C.I.; Chang, M.F. Undrained cavity expansion in modified Cam clay I: Theoretical analysis. Geotechnique 2001, 51, 323-334. [CrossRef]
  18. Grimstad, G.; Degago, S.A.; Nordal, S. Modeling creep and rate effects in structured anisotropic soft clays. Acta Geotech. 2010, 5, 69-81. [CrossRef]
  19. Yin, Z.Y.; Xu, Q.; Hicher, P.Y. A simple critical-state-based double-yield-surface model for clay behavior under complex loading. Acta Geotech. 2013, 8, 509-523. [CrossRef]
  20. Miranda, P.A.M.N.; Vargas, E.A.; Moraes, A. Evaluation of the Modified Cam Clay model in basin and petroleum system modeling (BPSM) loading conditions. Mar. Pet. Geol. 2019, 112, 104-112. [CrossRef]
  21. Ou, C.Y.; Liu, C.C.; Chin, C.K. Anisotropic viscoplastic modeling of rate-dependent behavior of clay. Int. J. Numer. Anal. Methods Geomech. 2011, 35, 1189-1206. [CrossRef]
  22. Li, X.S.; Wang, Y. Linear representation of steady state line for sand. J. Geotech. Geoenviron. Eng. 1998, 124, 1215-1217. [CrossRef]
  23. Yang, Z.X.; Li, X.S.; Yang, J. Quantifying and modelling fabric anisotropy of granular soils. Geotechnique 2008, 58, 237-248.
  24. Yang, J.; Wei, L.M.; Dai, B.B. State variables for silty sands: Global void ratio or skeleton void ratio? Soils Found. 2015, 55, 99-111.
  25. Murthy, T.G.; Loukidis, D.; Carraro, J.A.H.; Prezzi, M.; Salgado, R. Undrained monotonic response of clean and silty sands. Geotechnique 2007, 57, 273-288. [CrossRef]
  26. Rahman, M.M.; Lo, S.R.; Baki, M.A.L. Equivalent granular state parameter and undrained behaviour of sand-fines mixtures. Acta Geotech. 2011, 6, 183-194. [CrossRef]
  27. Rahman, M.M.; Lo, S.R.; Dafalias, Y.F. Modelling the static liquefaction of sand with low-plasticity fines. Geotechnique 2014, 64, 881-894. [CrossRef]
  28. Duriez, J.; Vincens, É. Constitutive modelling of cohesionless soils and interfaces with various internal states: An elasto-plastic approach. Comput. Geotech. 2015, 63, 33-45. [CrossRef]
  29. Thevanayagam, S.; Martin, G.R. Liquefaction in silty soils-screening and remediation issue. Soil Dyn. Earthquake Eng. 2002, 22, 1035-1042. [CrossRef]
  30. Taiebat, M.; Dafalias, Y.F. Simple Yield Surface Expressions Appropriate for Soil Plasticity. Int. J. Geomech. 2010, 10, 161-169.
  31. Been, K.; Jefferies, M.G. A state parameter for sands. Geotechnique 1985, 35, 99-112. [CrossRef]
  32. Manzari, M.T.; Dafalias, Y.F. A critical state two surface plasticity model for sands. Geotechnique 1997, 47, 255-272. [CrossRef]
  33. Dafalias, Y.F.; Manzari, M.T. Simple plasticity sand model accounting for fabric change effects. Int. J. Appl. Mech. 2004, 130, 622-634. [CrossRef]
  34. Wan, R.G.; Guo, P.J. A simple constitutive model for granular soils: Modified stress-dilatancy approach. Comput. Geotech. 1998, 22, 109-133. [CrossRef]
  35. Wang, Z.L.; Dafalias, Y.F.; Li, X.S.; Makdisi, F.I. State pressure index for modeling sand behavior. J. Geotech. Geoenviron. Eng. 2002, 128, 511-519. [CrossRef]
  36. Vesic, A.; Clough, G.W. Behavior of granular materials under high stresses. J. Soil Mech. Found. Div. 1968, 94, 661-688. [CrossRef]
  37. Lashkari, A. On the modeling of the state dependency of granular soils. Comput. Geotech. 2009, 36, 1237-1245. [CrossRef]
  38. Verdugo, R. Characterization of sandy soil behaviorunderlargedeformation. Ph.D. Thesis, Universityof Tokyo, Tokyo, Japan, 1992.
  39. Verdugo, R.; Ishihara, K. The Steady State of Sandy Soils. Soils Found. 1996, 36, 81-91. [CrossRef] [PubMed]
  40. Ni, Q.; Tan, T.S.; Dasari, G.R.; Hight, D.W. Contribution of fines to the compressive strength of mixed soils. Geotechnique 2004, 54, 561-569. [CrossRef]
  41. Stamatopoulos, C.A. An experimental study of the liquefaction strength of silty sands in terms of the state parameter. Soil Dyn. Earthq. Eng. 2010, 30, 662-678. [CrossRef]
  42. Ventouras, K.; Coop, M.R. On the behavior of Thanet sand: An example of an uncemented natural sand. Geotechnique 2009, 59, 727-738. [CrossRef]
  43. Rahman, M.M.; Lo, S.R.; Gnanendran, C.T. On equivalent granular void ratio and steady state behavior of loose sand with fines. Can. Geotech. J. 2008, 45, 1439-1456. [CrossRef]
  44. Papadopoulou, A.; Tika, T. The effect of fines on critical state and liquefaction resistance characteristics of non-plastic silty sands. Soils Found. 2008, 48, 713-725. [CrossRef]
  45. Huang, Y.T.; Huang, A.B.; Kuo, Y.C.; Tsai, M.D. A laboratory study on the undrained strength of silty sand from Central Western Taiwan. Soil Dyn. Earthq. Eng. 2004, 24, 733-743. [CrossRef]
  46. Disclaimer/Publisher's Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.