Academia.eduAcademia.edu

Outline

Peptidoglycan recognition in innate immunity

2005, Journal of Endotoxin Research

https://doi.org/10.1179/096805105X67256

Abstract

is a polymer of β-(1-4)-linked Nacetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc), crosslinked by short peptides containing alternating Land D-amino acids (Fig. 1). 1 Gram-negative bacteria and Gram-positive bacilli (genus Bacillus and Clostridium) have m-diaminopimelic acid (m-DAP) in position 3. Most other Gram-positive bacteria (e.g. Gram-positive cocci) have L-lysine in position 3 (Fig. 1). The components of the innate immune system that discriminate between microorganisms and self recognize

References (65)

  1. Doyle RJ, Dziarski R. The bacterial cell: peptidoglycan. In: Sussman M. (ed) Molecular Medical Microbiology. London: Academic Press, 2001; 137-153.
  2. Janeway C. Medzhitov R. Innate immune recognition. Annu Rev Immunol 2002; 20: 197-216.
  3. Wright SD, Ramos RA, Tobias PS, Ulevitch RJ, Mathison JC. CD14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249: 1431-1433.
  4. Pugin J, Heumann D, Tomasz A et al. CD14 is a pattern recognition receptor. Immunity 1994; 1: 509-516.
  5. Weidemann B, Brade H, Rietschel ET et al. Soluble peptidoglycan-induced monokine production can be blocked by anti-CD14 monoclonal antibodies and by lipid A partial structures. Infect Immun 1994; 62: 4709-4715.
  6. Gupta D, Kirkland TN, Viriyakosol S, Dziarski R. CD14 is a cell-activating receptor for bacterial peptidoglycan. J Biol Chem 1996; 271: 23310-23316.
  7. Weidemann B, Schletter J, Dziarski R et al. Specific binding of soluble peptidoglycan and muramyl dipeptide to CD14 on human monocytes. Infect Immun 1997; 65: 858-864.
  8. Dziarski R, Tapping RI, Tobias P. Binding of bacterial peptidoglycan to CD14. J Biol Chem 1998; 273: 8680-8690.
  9. Gupta D, Wang Q, Vinson C, Dziarski R. Bacterial peptidoglycan induces CD14-dependent activation of transcription factors CREB/ATF and AP-1. J Biol Chem 1999; 274: 14012-14020.
  10. Schwandner R, Dziarski R, Wesche H, Rothe M, Kirschning CJ. Peptidoglycan-and lipoteichoic acid-induced cell activation is mediated by Toll-like receptor 2. J Biol Chem 1999; 274: 17406-17409.
  11. Dziarski R. Recognition of bacterial peptidoglycan by the innate immune system. Cell Mol Life Sci 2003; 60: 1793-1804.
  12. Yoshimura A, Lien E, Ingalls RR, Tuomanen E, Dziarski R, Golenbock D. Recognition of Gram-positive bacterial cell wall components by the innate immune system occurs via Toll-like receptor 2. J Immunol 1999; 163: 1-5.
  13. Takeuchi O, Hoshino K, Kawai T, Sanjo H, Takada H, Ogawa T. Differential roles of TLR2 and TLR4 in recognition of Gram- negative and Gram-positive bacterial cell wall components. Immunity 1999; 11: 443-451.
  14. Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between Toll-like receptors. Proc Natl Acad Sci USA 2000; 97: 13766-13771.
  15. Takeuchi O, Kawai T, Muhlradt PF et al. Discrimination of bacterial lipoproteins by Toll-like receptor 6. Int Immunol 2001; 13: 933-940.
  16. Takeuchi O, Sato S, Horiuchi T et al. Role of Toll-like receptor 1 in mediating immune responses to microbial lipoproteins. J Immunol 2002; 169: 10-14.
  17. Iwaki D, Mitsuzawa H, Murakami S et al. The extracellular Toll- like receptor 2 domain directly binds peptidoglycan derived from Staphylococcus aureus. J Biol Chem 2002; 277: 24315-24320.
  18. Mitsuzawa H, Wada I, Sano H et al. Extracellular Toll-like receptor 2 region containing Ser 40 -Ile 64 but not Cys 30 -Ser 39 is critical for the recognition of Staphylococcus aureus peptidoglycan. J Biol Chem 2001; 276: 41350-41356.
  19. Travassos LH, Girardin SE, Philpott DJ et al. Toll-like receptor 2-dependent bacterial sensing does not occur via peptidoglycan recognition. EMBO Report 2004; 5: 1000-1006.
  20. Dziarski R, Gupta D. Staphylococcus aureus peptidoglycan is a Toll-like receptor 2 activator: a reevaluation. Infect Immun 2005; 73: 5212-5216.
  21. Inohara N, Ogura Y, Nunez G. Nods: a family of cytosolic proteins that regulate the host response to pathogens. Curr Opin Microbiol 2002; 5: 76-80.
  22. Girardin SE, Boneca IG, Carneiro LAM et al. Nod1 detects a unique muropeptide from Gram-negative bacterial peptidoglycan. Science 2003; 300: 1584-1587.
  23. Chamaillard M, Hashimoto M, Horie Y et al. An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 2003; 7: 702-707.
  24. Girardin SE, Travassos LH, Herve M et al. Peptidoglycan molecular requirements allowing detection by Nod1 and Nod2. J Biol Chem 2003; 278: 41702-41708.
  25. Inohara N, Ogura Y, Fontalba A et al. Host recognition of bacterial muramyl dipeptide mediated through NOD2: implications for Crohn's disease. J Biol Chem 2003; 278: 5509-5512.
  26. Girardin SE, Boneca IG, Viala J et al. Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J Biol Chem 2003; 278: 8869-8872.
  27. Inohara N, Ogura Y, Chen FF, Muto A, Nunez G. Human Nod1 confers responsiveness to bacterial lipopolysaccharide. J Biol Chem 2001; 276: 2551-2554.
  28. Viala J, Chaput C, Boneca IG et al. Nod1 responds to peptidoglycan delivered by the Helicobacter pylori cag pathogenicity island. Nat Immunol 2004; 5: 1166-1174.
  29. Dziarski R, Platt KA, Gelius E, Steiner H, Gupta D. Defect in neutrophil killing and increased susceptibility to infection with non-pathogenic Gram-positive bacteria in peptidoglycan recognition protein-S-deficient mice. Blood 2003; 102: 689-697.
  30. Yoshida H, Kinoshita K, Ashida M. Purification of peptidoglycan recognition protein from hemolymph of the silkworm, Bombyx mori. J Biol Chem 1996; 271: 13854-13860.
  31. Kang D, Liu G, Lundstrom A, Gelius E, Steiner H. A peptidoglycan recognition protein in innate immunity conserved from insects to mammals. Proc Natl Acad Sci USA 1998; 95: 10078-10082.
  32. Werner T, Liu G, Kang D, Ekengren S, Steiner H, Hultmark D. A family of peptidoglycan recognition proteins in the fruit fly Drosophila melanogaster. Proc Natl Acad Sci USA 2000; 97: 13772-13777.
  33. Liu C, Xu Z, Gupta D, Dziarski R. Peptidoglycan recognition proteins: a novel family of four human innate immunity pattern recognition molecules. J Biol Chem 2001; 276: 34686-34694.
  34. Dziarski R. Peptidoglycan recognition proteins (PGRPs). Mol Immunol 2004; 40: 877-886.
  35. Christophides GK, Zdobnov E, Barillas-Mury C et al. Immunity- related genes and gene families in Anopheles gambiae. Science 2002; 298: 159-165.
  36. Dimopoulos G, Christophides GK, Meister S et al. Genome expression analysis of Anopheles gambiae: responses to injury, bacterial challenge, and malaria infection. Proc Natl Acad Sci USA 2002; 99: 8814-8819.
  37. Takehana A, Katsuyama T, Yano T et al. Overexpression of a pattern-recognition receptor, peptidoglycan-recognition protein- LE, activates Imd/Relish-mediated antibacterial defense and the prophenoloxidase cascade in Drosophila larvae. Proc Natl Acad Sci USA 2002; 99: 13705-13710.
  38. Takehana A, Yano T, Mita S, Kotani A, Oshima Y, Kurata S. Peptido- glycan recognition protein (PGRP)-LE and PGRP-LC act syner- gistically in Drosophila immunity. EMBO J 2004; 23: 4690-4700.
  39. Lee MH, Osaki T, Lee JY et al. Peptidoglycan recognition proteins involved in 1,3-β-D-glucan-dependent prophenoloxidase activation system of insect. J Biol Chem 2004; 279: 3218-3227.
  40. Mellroth P, Karlsson J, Steiner H. A scavenger function for a Drosophila peptidoglycan recognition protein. J Biol Chem 2003; 278: 7059-7064.
  41. Kim M-S, Byun M, Oh B-H. Crystal structure of peptidoglycan recognition protein LB from Drosophila melanogaster. Nat Immunol 2003; 4: 787-793.
  42. Gelius E, Persson C, Karlsson J, Steiner H. A mammalian peptidoglycan recognition protein with N-acetylmuramoyl-L- alanine amidase activity. Biochem Biophys Res Commun 2003; 306: 988-994.
  43. Wang Z-M, Li X, Cocklin RR et al. Human peptidoglycan recognition protein-L is an N-acetylmuramoyl-L-alanine amidase. J Biol Chem 2003; 278: 49044-49052.
  44. Chang CI, Pili-Floury S, Herve M et al. A Drosophila pattern recognition receptor contains a peptidoglycan docking groove and unusual L,D-carboxypeptidase activity. PLoS Biol 2004; 2: 1293-1302.
  45. Michel T, Reichhart J-M, Hoffmann JA, Royet J. Drosophila Toll is activated by Gram-positive bacteria through a circulating peptidoglycan recognition protein. Nature 2001; 414: 756-759.
  46. Leulier F, Parquet C, Pili-Floury S et al. The Drosophila immune system detects bacteria through specific peptidoglycan recognition. Nat Immunol 2003: 4: 478-484.
  47. Gobert V, Gottar M, Matskevich AA et al. Dual activation of the Drosophila Toll pathway by two pattern recognition receptors. Science 2003; 302: 2126-2130.
  48. Pili-Floury S, Leulier F, Takahashi K et al. In vivo RNA interference analysis reveals an unexpected role for GNBP1 in the defense against Gram-positive bacterial infection in Drosophila adults. J Biol Chem 2004; 279: 12848-12853.
  49. Bischoff V, Vignal C, Boneca IG, Michel T, Hoffmann JA, Royet J. Function of the Drosophila pattern-recognition receptor PGRP- SD in the detection of Gram-positive bacteria. Nat Immunol 2004; 5: 1175-1180.
  50. Hultmark D. Drosophila immunity: paths and patterns. Curr Opin Immunol 2003; 15: 1219.
  51. Choe K-M, Werner T, Stoven S, Hultmark D, Anderson KV. Requirement for a peptidoglycan recognition protein (PGRP) in Relish activation and antibacterial immune responses in Drosophila. Science 2002; 296: 359-362.
  52. Gottar M, Gobert V, Michel T, Belvin M, Duyk G, Hoffmann JA. The Drosophila immune response against Gram-negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002; 416: 640-644.
  53. Ramet M, Manfruelli P, Pearson A, Mathey-Prevot B, Ezekowitz RAB. Functional genomic analysis of phagocytosis and identification of a Drosophila receptor for E. coli. Nature 2002; 416: 644-648.
  54. Werner T, Borge-Renberg K, Mellroth P, Steiner H, Hultmark D. Functional diversity of the Drosophila PGRP-LC gene cluster in the response to lipopolysaccharide and peptidoglycan. J Biol Chem 2003; 278: 26319-26322.
  55. Stenbak CR, Ryu JH, Leulier F et al. Peptidoglycan molecular requirements allowing detection by the Drosophila immune deficiency pathway. J Immunol 204; 173: 7339-7348.
  56. Liu C, Gelius E, Liu G, Steiner H, Dziarski R. Mammalian peptidoglycan recognition protein binds peptidoglycan with high affinity, is expressed in neutrophils, and inhibits bacterial growth. J Biol Chem 2000; 275: 24490-24499.
  57. Tydell CC, Yount N, Tran D, Yuan J, Selsted M. Isolation, characterization, and antimicrobial properties of bovine oligosaccharide-binding protein. J Biol Chem 2002; 277: 19658-19664.
  58. Mollner S, Braun V. Murein hydrolase (N-acetyl-muramoyl-L- alanine amidase) in human serum. Arch Microbiol 1984; 140: 171-177.
  59. Vanderwinkel E, De Vlieghere M, De Pauw P et al. Purification and characterization of N-acetylmuramoyl-L-alanine amidase from human serum. Biochim Biophys Acta 1990; 1039: 331-338.
  60. Hoijer MA, Melief M-J, Keck W, Hazenberg MP. Purification and characterization of N-acetylmuramoyl-L-alanine amidase from human plasma using monoclonal antibodies. Biochim Biophys Acta 1996; 1289: 57-64.
  61. Zhang Y, van der Fits L, Voerman JS et al. Identification of serum N-acetylmuramoyl-L-alanine amidase as liver peptidoglycan recognition protein 2. Biochim Biophys Acta 2005; 1752: 34-46.
  62. Wang H, Gupta D, Li X, Dziarski R. Peptidoglycan recognition protein 2 (N-acetylmuramoyl-L-alanine amidase) is induced in keratinocytes by bacteria through p38 kinase pathway. Infect Immun 2005; 73: In press.
  63. Hoijer MA, Melief M-J, Debets R, Hazenberg MP. Inflammatory properties of peptidoglycan are decreased after degradation with human N-acetylmuramoyl-L-alanine amidase. Eur Cytokine Netw 1997; 8: 375-382.
  64. Chipman DM, Sharon N. Mechanism of lysozyme action. Science 1967; 165: 454-465.
  65. Ganz T, Gabayan V, Liao H-I et al. Increased inflammation in lysozyme M-deficient mice in response to Micrococcus luteus and its peptidoglycan. Blood 2002; 101: 2388-2392.