A Lagrangian Study of Precipitation-Driven Downdrafts*
2016, Journal of the Atmospheric Sciences
https://doi.org/10.1175/JAS-D-15-0222.1Abstract
The dependence of entrainment rate on environmental conditions and cloud characteristics is investigated using large eddy simulations (LES) of the response of shallow cumulus convection to a small-amplitude temperature perturbation that is horizontally uniform and localized in height. The simulated cumulus fields are analyzed in the framework of an ensemble of entraining plumes by tracking a large number of Lagrangian parcels embedded in the LES and grouping them into different plumes based on their detrainment heights. The results show that fractional entrainment rate per unit height of a plume is inversely proportional to the plume's vertical velocity and its distance to the cloud edge, while changes in environmental stratification and relative humidity, the plume's buoyancy, or the vertical gradient of its buoyancy due to the temperature perturbation have little effect on the plume's entrainment rate.
References (40)
- Arakawa, A., and W. H. Schubert (1974), Interaction of a cumulus cloud ensemble with the large-scale environment. Part I, J. Atmos. Sci., 31, 674-701.
- Bechtold, P., M. Kohler, T. Jung, F. Doblas-Reyes, M. Leutbecher, M. J. Rodwell, F. Vitart, and G. Balsamo (2008), Advances in simulating atmospheric variability with the ECMWF model: From synoptic to decadal time-scales, Q. J. R. Meteorol. Soc., 34, 1337-1351.
- Bretherton, C. S., and P. K. Smolarkiewicz (1989), Gravity Waves, compensating subsidence, and detrainment around cumulus clouds, J. Atmos. Sci., 46, 740-759.
- Bretherton, C. S., J. R. McCAA, and H. Grenier (2004), A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results, Mon. Weather Rev., 132, 864-882.
- Chikira, M., and M. Sugiyama (2010), A cumulus parameterization with state-dependent entrainment rate. Part I: Description and sensitivity to temperature and humidity profiles, J. Atmos. Sci., 67, 2171-2193.
- Dawe, J. T., and P. H. Austin (2013), Direct entrainment and detrainment rate distributions of individual shallow cumulus clouds in an LES, Atmos. Chem. Phys., 13, 7795-7811.
- Emanuel, K. A., and M. Zivkovic-Rothman (1999), Development and evaluation of a convection scheme for use in climate models, J. Atmos. Sci., 56, 1766-1782.
- Grabowski, W. W., and T. L. Clark (1991), Cloud-environment interface instability: Rising thermal calculations in two spatial dimensions, J. Atmos. Sci., 48, 527-546.
- Grabowski, W. W., and T. L. Clark (1993), Cloud-environment interface instability: Part II: Extension to three spatial dimensions, J. Atmos. Sci., 50, 555-573.
- Grant, A. L. M., and A. R. Brown (1999), A similarity hypothesis for shallow-cumulus transports, Q. J. R. Meteorol. Soc., 125, 1913-1936.
- Gregory, D. (2001), Estimation of entrainment rate in simple models of convective clouds, Q. J. R. Meteorol. Soc., 127, 53-72.
- Hohenegger, C., and C. S. Bretherton (2011), Simulating deep convection with a shallow convection scheme, Atmos. Chem. Phys., 11, 10,389-10,406.
- Heus, T. (2008), Mixing in shallow cumulus clouds studied by Lagrangian particle tracking, J. Atmos. Sci., 65, 2581-2597.
- Holland, J. Z., and E. M. Rasmusson (1973), Measurement of atmospheric mass, energy, and momentum budgets over a 500-kilometer square of tropical ocean, Mon. Weather Rev., 101, 44-55.
- Jarecka, D., W. W. Grabowski, and H. Pawlowska (2009), Modeling of subgrid-scale mixing in large-eddy simulation of shallow convection, J. Atmos. Sci., 66, 2125-2133.
- Jarecka, D., W. W. Grabowski, and H. Pawlowska (2013), Homogeneity of the subgrid-scale turbulent mixing in large-eddy simulation of shallow convection, J. Atmos. Sci., 70, 2751-2767.
- Krueger, S. K., C.-W. Su, and P. A. McMurtry (1997), Modeling entrainment and fine-scale mixing in cumulus clouds, J. Atmos. Sci., 54, 2697-2712.
- Kuang, Z. (2010), Linear response functions of a cumulus ensemble to temperature and moisture perturbations and implication to the dynamics of convectively coupled waves, J. Atmos. Sci., 67, 941-962.
- Kuang, Z. (2012), Weakly forced mock walker cells, J. Atmos. Sci., 69, 2759-2786.
- Kuang, Z., and S. C. Bretherton (2006), A mass-flux scheme view of a high-resolution simulation of a transition from shallow to deep cumulus convection, J. Atmos. Sci., 63, 1895-1909.
- Khairoutdinov, M. F., and D. A. Randall (2001), A cloud-resolving model as a cloud parameterization in the NCAR community climate system model: Preliminary results, Geophys. Res. Lett., 28, 3617-3620.
- Lawrence, M. G., and P. J. Rasch (2005), Tracer transport in deep convective updrafts: Plume ensemble versus bulk formulations, J. Atmos. Sci., 62, 2880-2894.
- Lin, C. (1999), Some bulk properties of cumulus ensembles simulated by a cloud-resolving model. Part II: Entrainment profiles, J. Atmos. Sci., 56, 3736-3748.
- Lin, C., and A. Arakawa (1997), The macroscopic entrainment processes of simulated cumulus ensemble. Part II: Testing the entraining-plume model, J. Atmos. Sci., 54, 1044-1053. 10.1002/2016GL069005
- Mapes, B., and R. Neale (2011), Parameterizing convective organization to escape the entrainment dilemma, J. Adv. Model. Earth Syst., 3, M06004, doi:10.1029/2011MS000042.
- Morton, B., G. Taylor, and J. Turner (1956), Turbulent gravitational convection from maintained and instantaneous sources, Proc. R. Soc. A, 234, 1-23.
- Neggers, R. A. J., A. P. Siebesma, and H. J. J. Jonker (2002), A multipacel model for shallow cumulus convection, J. Atmos. Sci., 59, 1655-1668.
- Nie, J., and Z. Kuang (2012a), Responses of shallow cumulus convection to large-scale temperature and moisture perturbations: A comparison of large-eddy simulations and a convective parameterization based on stochastically entraining parcels, J. Atmos. Sci., 69, 1936-1956.
- Nie, J., and Z. Kuang (2012b), Beyond bulk entrainment and detrainment rates: A new frame-work for diagnosing mixing in cumulus convection, Geophys. Res. Lett., 39, L21803, doi:10.1029/2012GL053992.
- Paluch, I. R. (1979), The entrainment mechanism in Colorado cumuli, J. Atmos. Sci., 36, 2467-2478.
- Raymond, D. J., and A. M. Blyth (1986), A stochastic mixing model for nonprecipitating cumulus clouds, J. Atmos. Sci., 43, 2708-2718.
- Romps, D. M. (2010), A direct measure of entrainment, J. Atmos. Sci., 67, 1908-1927.
- Romps, D. M., and Z. Kuang (2010), Do undiluted convective plumes exist in the upper tropical troposphere?, J. Atmos. Sci., 67, 468-484.
- Siebesma, A. P. (1998), Shallow cumulus convection, in Buoyant Convection in Geophysical Flows, edited by E. J. Plate et al., pp. 441-486, Kluwer Acad., Dordrecht, Netherlands.
- Siebesma, A. P., et al. (2003), A large eddy simulation inter comparison study of shallow cumulus convection, J. Atmos. Sci., 60, 1201-1219.
- Simpson, J., and V. Wiggert (1969), Models of precipitating cumulus towers, Mon. Weather Rev., 97, 471-489.
- Tiedtke, M. (1989), A comprehensive mass flux scheme for cumulus parameterization in large-scale models, Mon. Weather Rev., 117, 1779-1800.
- Torri, G., Z. Kuang, and Y. Tian (2015), Mechanisms for convection triggering by cold pools, Geophys. Res. Lett., 42, 1943-1950.
- Weil, J. C. (2004), The use of large-eddy simulation in Lagrangian particle dispersion models, J. Atmos. Sci., 61, 2877-2887.
- Yeo, K., and D. Romps (2013), Measurement of convective entrainment using Lagrangian particles, J. Atmos. Sci., 70, 266-277.