Modular Forms and Calabi-Yau Varieties
2014, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1404.1154Abstract
AI
AI
This work investigates the relationship between modular forms of weight k ≥ 2 and Calabi-Yau varieties. It provides evidence for the conjectures of Mazur and van Straten, which suggest that each normalized newform with rational coefficients is associated with a Calabi-Yau variety of dimension k − 1, satisfying particular properties related to motives and ℓ-adic representations. The article emphasizes the existence of an involution that contributes to further understanding the interplay between modular forms and algebraic geometry.
References (25)
- L. Clozel. Motifs et formes automorphes: applications du principe de fonc- torialité. In Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math., pages 77-159. Academic Press, Boston, MA, 1990.
- L. Clozel. Représentations galoisiennes associées aux représentations au- tomorphes autoduales de GL(n). Inst. Hautes Études Sci. Publ. Math. (1991), 97-145.
- S. Cynk and K. Hulek. Higher-dimensional modular Calabi- Yau manifolds. Canad. Math. Bull. 50 (2007), 486-503. http://dx.doi.org/10.4153/CMB-2007-049-9
- S. Cynk and M. Schütt. Generalised Kummer constructions and Weil restrictions. J. Number Theory 129 (2009), 1965-1975. http://dx.doi.org/10.1016/j.jnt.2008.09.010
- P. Deligne. Formes modulaires et reprsentations ℓ-adiques. Séminaire Bourbaki 1968/69 355 (1971), 139-172.
- P. Deligne, J. S. Milne, A. Ogus, and K.-y. Shih. Hodge cycles, mo- tives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1982.
- L. Dieulefait. On the modularity of rigid Calabi-Yau threefolds: Epilogue. Proceedings of the trimester on Diophantine Equations at the Hausdorff Institute (2010), 1-7.
- B. Edixhoven. Introduction, main results, context. In Computational as- pects of modular forms and Galois representations, volume 176 of Ann. of Math. Stud., pages 1-27. Princeton Univ. Press, Princeton, NJ, 2011.
- N. D. Elkies and M. Schütt. Modular forms and K3 surfaces. Adv. Math. 240 (2013), 106-131. http://dx.doi.org/10.1016/j.aim.2013.03.008
- F. Q. Gouvêa, I. Kiming, and N. Yui. Quadratic twists of rigid Calabi-Yau threefolds over Q. In Arithmetic and geom- etry of K3 surfaces and Calabi-Yau threefolds, volume 67 of Fields Inst. Commun., pages 517-533. Springer, New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6403-7_20
- F. Q. Gouvêa and N. Yui. Rigid Calabi-Yau threefolds over Q are modular. Expo. Math. 29 (2011), 142-149. http://dx.doi.org/10.1016/j.exmath.2010.09.001
- B. H. Gross. Arithmetic on elliptic curves with complex multiplication, volume 776 of Lecture Notes in Mathematics. Springer, Berlin, 1980. With an appendix by B. Mazur.
- C. Khare and J.-P. Wintenberger. Serre's modular- ity conjecture. I. Invent. Math. 178 (2009), 485-504. http://dx.doi.org/10.1007/s00222-009-0205-7
- H. H. Kim. Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 . J. Amer. Math. Soc. 16 (2003), 139-183 (electronic). With Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak.
- H. H. Kim and F. Shahidi. Functorial products for GL 2 × GL 3 and the symmetric cube for GL 2 . Ann. of Math. (2) 155 (2002), 837-893. With an appendix by Colin J. Bushnell and Guy Henniart.
- M. Kisin. Modularity of 2-adic Barsotti-Tate rep- resentations. Invent. Math. 178 (2009), 587-634. http://dx.doi.org/10.1007/s00222-009-0207-5
- C. Meyer. A dictionary of modular threefolds, 2005.
- K. Paranjape and D. Ramakrishnan. Quotients of E n by A n+1 and Calabi- Yau manifolds. In Algebra and number theory, pages 90-98. Hindustan Book Agency, Delhi, 2005.
- D. Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multi- plicity one for SL(2). Ann. of Math. (2) 152 (2000), 45-111.
- D. Ramakrishnan and F. Shahidi. Siegel modular forms of genus 2 at- tached to elliptic curves. Math. Res. Lett. 14 (2007), 315-332.
- D. E. Rohrlich. On the L-functions of canonical Hecke characters of imaginary quadratic fields. Duke Math. J. 47 (1980), 547-557. http://projecteuclid.org/euclid.dmj/1077314180
- C. Schoen. On fiber products of rational elliptic sur- faces with section. Math. Z. 197 (1988), 177-199. http://dx.doi.org/10.1007/BF01215188
- A. J. Scholl. Motives for modular forms. Invent. Math. 100 (1990), 419- 430. http://dx.doi.org/10.1007/BF01231194
- N. Yui and J. D. Lewis, editors. Calabi-Yau varieties and mirror symme- try, volume 38 of Fields Institute Communications, Providence, RI, 2003. American Mathematical Society.
- N. Yui, S.-T. Yau, and J. D. Lewis, editors. Mirror symmetry. V, vol- ume 38 of AMS/IP Studies in Advanced Mathematics, Providence, RI, 2006. American Mathematical Society.