Academia.eduAcademia.edu

Outline

Modular Forms and Calabi-Yau Varieties

2014, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1404.1154

Abstract
sparkles

AI

This work investigates the relationship between modular forms of weight k ≥ 2 and Calabi-Yau varieties. It provides evidence for the conjectures of Mazur and van Straten, which suggest that each normalized newform with rational coefficients is associated with a Calabi-Yau variety of dimension k − 1, satisfying particular properties related to motives and ℓ-adic representations. The article emphasizes the existence of an involution that contributes to further understanding the interplay between modular forms and algebraic geometry.

References (25)

  1. L. Clozel. Motifs et formes automorphes: applications du principe de fonc- torialité. In Automorphic forms, Shimura varieties, and L-functions, Vol. I (Ann Arbor, MI, 1988), volume 10 of Perspect. Math., pages 77-159. Academic Press, Boston, MA, 1990.
  2. L. Clozel. Représentations galoisiennes associées aux représentations au- tomorphes autoduales de GL(n). Inst. Hautes Études Sci. Publ. Math. (1991), 97-145.
  3. S. Cynk and K. Hulek. Higher-dimensional modular Calabi- Yau manifolds. Canad. Math. Bull. 50 (2007), 486-503. http://dx.doi.org/10.4153/CMB-2007-049-9
  4. S. Cynk and M. Schütt. Generalised Kummer constructions and Weil restrictions. J. Number Theory 129 (2009), 1965-1975. http://dx.doi.org/10.1016/j.jnt.2008.09.010
  5. P. Deligne. Formes modulaires et reprsentations ℓ-adiques. Séminaire Bourbaki 1968/69 355 (1971), 139-172.
  6. P. Deligne, J. S. Milne, A. Ogus, and K.-y. Shih. Hodge cycles, mo- tives, and Shimura varieties, volume 900 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1982.
  7. L. Dieulefait. On the modularity of rigid Calabi-Yau threefolds: Epilogue. Proceedings of the trimester on Diophantine Equations at the Hausdorff Institute (2010), 1-7.
  8. B. Edixhoven. Introduction, main results, context. In Computational as- pects of modular forms and Galois representations, volume 176 of Ann. of Math. Stud., pages 1-27. Princeton Univ. Press, Princeton, NJ, 2011.
  9. N. D. Elkies and M. Schütt. Modular forms and K3 surfaces. Adv. Math. 240 (2013), 106-131. http://dx.doi.org/10.1016/j.aim.2013.03.008
  10. F. Q. Gouvêa, I. Kiming, and N. Yui. Quadratic twists of rigid Calabi-Yau threefolds over Q. In Arithmetic and geom- etry of K3 surfaces and Calabi-Yau threefolds, volume 67 of Fields Inst. Commun., pages 517-533. Springer, New York, 2013. http://dx.doi.org/10.1007/978-1-4614-6403-7_20
  11. F. Q. Gouvêa and N. Yui. Rigid Calabi-Yau threefolds over Q are modular. Expo. Math. 29 (2011), 142-149. http://dx.doi.org/10.1016/j.exmath.2010.09.001
  12. B. H. Gross. Arithmetic on elliptic curves with complex multiplication, volume 776 of Lecture Notes in Mathematics. Springer, Berlin, 1980. With an appendix by B. Mazur.
  13. C. Khare and J.-P. Wintenberger. Serre's modular- ity conjecture. I. Invent. Math. 178 (2009), 485-504. http://dx.doi.org/10.1007/s00222-009-0205-7
  14. H. H. Kim. Functoriality for the exterior square of GL 4 and the symmetric fourth of GL 2 . J. Amer. Math. Soc. 16 (2003), 139-183 (electronic). With Appendix 1 by Dinakar Ramakrishnan and Appendix 2 by Kim and Peter Sarnak.
  15. H. H. Kim and F. Shahidi. Functorial products for GL 2 × GL 3 and the symmetric cube for GL 2 . Ann. of Math. (2) 155 (2002), 837-893. With an appendix by Colin J. Bushnell and Guy Henniart.
  16. M. Kisin. Modularity of 2-adic Barsotti-Tate rep- resentations. Invent. Math. 178 (2009), 587-634. http://dx.doi.org/10.1007/s00222-009-0207-5
  17. C. Meyer. A dictionary of modular threefolds, 2005.
  18. K. Paranjape and D. Ramakrishnan. Quotients of E n by A n+1 and Calabi- Yau manifolds. In Algebra and number theory, pages 90-98. Hindustan Book Agency, Delhi, 2005.
  19. D. Ramakrishnan. Modularity of the Rankin-Selberg L-series, and multi- plicity one for SL(2). Ann. of Math. (2) 152 (2000), 45-111.
  20. D. Ramakrishnan and F. Shahidi. Siegel modular forms of genus 2 at- tached to elliptic curves. Math. Res. Lett. 14 (2007), 315-332.
  21. D. E. Rohrlich. On the L-functions of canonical Hecke characters of imaginary quadratic fields. Duke Math. J. 47 (1980), 547-557. http://projecteuclid.org/euclid.dmj/1077314180
  22. C. Schoen. On fiber products of rational elliptic sur- faces with section. Math. Z. 197 (1988), 177-199. http://dx.doi.org/10.1007/BF01215188
  23. A. J. Scholl. Motives for modular forms. Invent. Math. 100 (1990), 419- 430. http://dx.doi.org/10.1007/BF01231194
  24. N. Yui and J. D. Lewis, editors. Calabi-Yau varieties and mirror symme- try, volume 38 of Fields Institute Communications, Providence, RI, 2003. American Mathematical Society.
  25. N. Yui, S.-T. Yau, and J. D. Lewis, editors. Mirror symmetry. V, vol- ume 38 of AMS/IP Studies in Advanced Mathematics, Providence, RI, 2006. American Mathematical Society.