Academia.eduAcademia.edu

Outline

A Survey of Feature Selection Techniques

Encyclopedia of Data Warehousing and Mining, Second Edition

https://doi.org/10.4018/978-1-60566-010-3.CH289

Abstract

Dimensionality (i.e., the number of data set attributes or groups of attributes) constitutes a serious obstacle to the efficiency of most data mining algorithms (Maimon and Last, 2000). The main reason for this is that data mining algorithms are computationally intensive. This obstacle is sometimes known as the “curse of dimensionality” (Bellman, 1961). The objective of Feature Selection is to identify features in the data-set as important, and discard any other feature as irrelevant and redundant information. Since Feature Selection reduces the dimensionality of the data, data mining algorithms can be operated faster and more effectively by using Feature Selection. In some cases, as a result of feature selection, the performance of the data mining method can be improved. The reason for that is mainly a more compact, easily interpreted representation of the target concept. The filter approach (Kohavi , 1995; Kohavi and John ,1996) operates independently of the data mining method emp...