Academia.eduAcademia.edu

Outline

A finite basis theorem for the description logic ${\cal ALC}$

2015, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1502.07634

Abstract

The main result of this paper is to prove the existence of a finite basis in the description logic ALC. We show that the set of General Concept Inclusions (GCIs) holding in a finite model has always a finite basis, i.e. these GCIs can be derived from finitely many of the GCIs. This result extends a previous result from Baader and Distel, which showed the existence of a finite basis for GCIs holding in a finite model but for the inexpressive description logics E L and E L gf p. We also provide an algorithm for computing this finite basis, and prove its correctness. As a byproduct, we extend our finite basis theorem to any finitely generated complete covariety (i.e. any class of models closed under morphism domain, coproduct and quotient, and generated from a finite set of finite models).

References (19)

  1. F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P.-F. Patel- Schneider (Eds.), The Description Logic Handbook: Theory, Implementation, and Applications., Cambridge University Press, 2003.
  2. M. Minsky, A framework for representing knowledge., in: J. Haudeland (Ed.), Mind Design: Philosophy, Psychology, Artificial Intelligence., The MIT Press, 1981.
  3. J.-F. Sowa, Principles of Semantic Networks, Morgan Kaufmann, 1991.
  4. F. Baader, S. Brandt, C. Lutz, Pushing the ⌉ envelop, in: IJCAI 2005, Proceedings of the 19th International Joint Conference on Artificial Intelligence, 2005, pp. 364-369.
  5. F. Baader, C. Lutz, B. Suntisrivaraporn, CEL-a polynomial-time reasoner for life cycle ontologies, in: IJCAR 2006, Proceedings of the 20th International Joint Conference on Artificial Intelligence, Vol. 4130 of Lecture Notes in Artificial Intelligence, Springer, 2006, pp. 287-291.
  6. F. Distel, Learning description logic knowledge bases from data using methods from formal concept analysis, Ph.D. thesis, University of Dresden (2011).
  7. F. Baader, F. Distel, A finite basis for the set of el-implications holding in a finite model, in: R. Medina, S.-A. Obiedkov (Eds.), Formal Concept Analysis, 6th International Conference, ICFCA 2008, Vol. 4933 of Lecture Notes in Computer Science, Springer, 2008, pp. 46-61.
  8. F. Baader, F. Distel, Exploring finite models in the description logic, in: S. Ferré, S. Rudolph (Eds.), Formal Concept Analysis, 7th International Conference, ICFCA 2009, Vol. 5548 of Lecture Notes in Computer Science, Springer, 2009, pp. 146-161.
  9. B. Ganter, R. Wille, Formal Concept Analysis: Mathematical Foundations, Springer-Verlag, 1997.
  10. S. Burris, H.-P. Sankappanavar, A course in Universal Algebra, Graduate Texts in Mathematics, Springer-Verlag, 1981.
  11. H.-P. Gumm, T. Schroder, Covarieties and complete covarieties, Theoretical Computer Science 260 (2001) 71-86.
  12. F. Baader, I. Horrocks, U. Sattler, Handbook of Knowledge Representation, Elsevier, 2008, Ch. Description Logics.
  13. A. Arnold, D. Niwinski, The µ-calculus over power set algebras, Elsevier, 2001, Ch. Rudiments of µ-calculus, pp. 141-153.
  14. D. Kozen, Results on the propositional µ-calculus, Theoretical Computer Science 27 (3) (1983) 333-354.
  15. K. Schild, Terminological cycles and the propositional µ- calculus, in: KR'94, 4th Int. Conf. on the Principles of Knowledge Representation and Reasoning, 1994, pp. 509-520.
  16. J. J. M. M. Rutten, Universal coalgebra: a theory of systems, Theoretical Computer Science 249 (1) (2000) 3-80. doi:10.1016/S0304-3975(00)00056-6. URL http://dx.doi.org/10.1016/S0304-3975(00)00056-6
  17. B. Nebel, Terminological cycles: Semantics and computational properties, in: J.-F. Sowa (Ed.), Principles of Semantics Networks, Morgan Kaufmann, 1991, pp. 331-361.
  18. A. Tarski, A lattice-theoretical fixpoint theorem and its applications, Pacific Journal of Mathematics 5 (1955) 285-309.
  19. A. Kurz, A co-variety-theorem for modal logic, in: M. Zakharyaschev, K. Segerberg, M. de Rijke, H. Wansing (Eds.), Advances in Modal Logic, Volume 2, CSLI Publications, 2000, pp. 367-380.