The Pollution Traveling Salesman Problem with Refueling
2024, Computers & Operations Research
https://doi.org/10.1016/J.COR.2024.106661Abstract
This study presents the Pollution Traveling Salesman Problem with Refueling, a novel optimization problem which integrates two recently proposed variants of the Traveling Salesman Problem: the Pollution Traveling Salesman Problem and the Traveling Salesman Problem with Refueling. The proposed problem captures the operational dynamics of a real-world routing scenario involving a single vehicle originating from a central depot and delivering products to end customers. When considering the vehicle’s fuel tank capacity and fuel consumption during the routing process, the need to visit fuel stations for refueling arises. To address this complex problem, a new mixed integer linear programming model was developed, and the Gurobi solver was employed to solve smaller instances. For the effective resolution of larger practical problem cases, a two-stage double adaptive general variable neighborhood search method was proposed. The proposed methodology exhibits comparable efficiency to a commercial solver, demonstrating notably low execution time requirements. To further assess its performance, a comparative study was conducted on TSPLib instances. In comparison to various solution approaches documented in the open literature, encompassing both VNS-based and alternative methods, our proposed approach consistently yields highly competitive results within low execution times.
References (39)
- 2579 2674 2644 ali535 202339 214198 217371 att48 10628 10628 10628 10628 att532 27686 29268 28924 bayg29 1610 1610 1610 1610 bays29 2020 2020 2020 2020 2020 berlin52 7542 7542 7542 7544.36 7542 7542.60 7544 bier127 118282 118660 120077 119006.39 brazil58 25395 25395 25395 25592.72 brg180 1950 1972 1974 burma14 3323 3323 3323 ch130 6110 6148 6166 6153.72 6368 ch150 6528 6570 6608 6644.95 6554 d198 15780 15913 15943 16079.28 15889 d493 35002 36515 36769 35864 d657 48912 52525 52209 d1291 50801 55199 55269 56095.33 d1655 62128 66860 67551 70337.23 d2103 80450 83643 84088 dantzig42 699 699 699 699 dsj1000 18659688 19925278 20212596 11861 12093 12129 12183.14 fl1400 20127 20983 22408 21085.98 fl1577 22249 23990 24350 fl3795 28772 31011 35948 fnl4461 182566 201459 216965 fri26 937 937 937 937 937 gil262 2378 2472 2479 2501.86 2427 gr17 2085 2085 2085 2085 gr21 2707 2707 2707 2707 gr24 1272 1272 1272 1272 1272 gr48 5046 5046 5046 5046 5046 gr96 55209 55413 55448 55774 gr120 6942 7007 6998 7127 gr137 69853 70285 70233 gr202 40160 41163 41411 43668 gr229 134602 137861 137400 gr431 171414 179891 181904 gr666 294358 311923 314951 hk48 11461 11461 11461 11461 kroA100 21282 21286 21286 21695.79 21624 21409.50 21285 kroB100 22141 22167 22172 22140.20 22715 22339.20 22212 kroC100 20749 20786 20775 20809.29 20818 20881.60 20855 kroD100 21294 21370 21297 21490.62 21621 21439.10 21415 kroE100 22068 22124 22149 22193.80 22424 22231.10 22132 kroA150 26524 26758 26829 26947.17 26734 kroB150 26130 26462 26499 26537.04 28700 26302 kroA200 29368 29920 30002 30339.67 29533 kroB200 29437 30124 30203 30453.22 64871 29837 lin105 14379 14409 14379 14395.64 14596 14396 lin318 42029 43612 43664 43964.93 42972.42 42965 nrw1379 56638 60140 60484 p654 34643 35009 35569 pa561 2763 2904 2927 pcb442 50778 52959 53020 50800.24 51836 pcb1173 56892 61214 61979 63435.95 pcb3038 137694 149146 156236 154565.40 pr76 108159 108159 108183 108159 108644
- Archetti, C., Peirano, L., & Grazia Speranza, M. (2022). Optimization in multimodal freight transportation problems A Survey. European Journal of Operational Research, 299 , 1-20.
- Barth, M., & Boriboonsomsin, K. (2009). Energy and emissions impacts of a freeway-based dynamic eco- driving system. Transportation Research Part D: Transport and Environment, 14 , 400-410.
- Barth, M., Younglove, T., & Scora, G. (2005). Development of a heavy-duty diesel modal emissions and fuel consumption model . Technical Report UCB-ITS-PRR-2005-1 California PATH Program, Institute of Transportation Studies, University of California, Berkeley.
- Bektaş, T., & Laporte, G. (2011). The Pollution-Routing Problem. Transportation Research Part B: Methodological , 45 , 1232-1250.
- Bingüler, A., & Bulkan, S. (2015). New variable neighborhood search structure for travelling salesman problems. British Journal of Mathematics Computer Science, 6 , 422-434.
- Brimberg, J., Salhi, S., Todosijević, R., & Urošević, D. (2023). Variable neighborhood search: The power of change and simplicity. Computers & Operations Research, 155 .
- Cacchiani, V., Contreras-Bolton, C., Escobar, J., Escobar-Falcon, L., Linfati, R., & Toth, P. (2018). An Iter- ated Local Search Algorithm for the Pollution Traveling Salesman Problem. In P. Daniele, & L. Scrimali (Eds.), New Trends in Emerging Complex Real Life Problems (pp. 83-91). Cham: Springer International Publishing.
- Cacchiani, V., Contreras-Bolton, C., Escobar-Falcon, L., & Toth, P. (2023). A matheuristic algorithm for the pollution and energy minimization traveling salesman problems. International Transactions in Operational Research, 30 , 655-687.
- Cheng, C., Yang, P., Qi, M., & Rousseau, L. (2017). Modeling a green inventory routing problem with a heterogeneous fleet. Transportation Research Part E: Logistics and Transportation Review , 97 , 97-112.
- Croes, G. A. (1958). A method for solving traveling salesman problems. Operations Research, 6 , 791-812.
- Demir, E., Bektaş, T., & Laporte, G. (2012). An adaptive large neighborhood search heuristic for the pollution-routing problem. European Journal of Operational Research, 223 , 346-359.
- Dukkanci, O., Kara, B. Y., & Bektaş, T. (2019). The green location-routing problem. Computers & Operations Research, 105 , 187-202.
- Ezugwu, A. E., & Adewumi, A. O. (2017). Discrete symbiotic organisms search algorithm for travelling salesman problem. Expert Systems With Applications, 87 , 70-78.
- Flood, M. (1956). The Traveling-Salesman Problem. Operations Research, 4 , 61-75.
- Goeke, D., & Schneider, M. (2015). Routing a mixed fleet of electric and conventional vehicles. European Journal of Operational Research, 245 , 81-99.
- Hansen, P., Mladenović, N., Todosijević, R., & Hanafi, S. (2017). Variable neighborhood search: Basics and variants. EURO Journal on Computational Optimization, 5 , 423-454.
- Hillier, F. S., & Lieberman, G. J. (2021). Introduction to Operations Research. (11th ed.). McGraw Hill.
- Hore, S., Chatterjee, A., & Deqanji, A. (2018). Improving variable neighborhood search to solve the traveling salesman problem. Applied Soft Computing, 68 , 83-91.
- Johnson, D., & Papadimitriou, C. (1985). Performance guarantees for heuristics. In E. Lawler, J. Lenstra, A. Rinnooy Kan, & D. Shmoys (Eds.), Ch. 5 in The Traveling Salesman Problem. Chichester: Wiley & Sons.
- Karakostas, P., & Sifaleras, A. (2022). A Double-Adaptive General Variable Neighborhood Search algorithm for the solution of the Traveling Salesman Problem. Applied Soft Computing, 121 .
- Karakostas, P., Sifaleras, A., & Georgiadis, C. (2019a). Basic VNS algorithms for solving the pollution location inventory routing problem. In Variable Neighborhood Search (ICVNS 2018) (pp. 64-76). Springer, Cham volume 11328 of LNCS .
- Karakostas, P., Sifaleras, A., & Georgiadis, C. (2019b). A general variable neighborhood search-based solution approach for the location-inventory-routing problem with distribution outsourcing. Computers & Chemical Engineering, 126 , 263-279.
- Karakostas, P., Sifaleras, A., & Georgiadis, C. (2020). Adaptive variable neighborhood search solution methods for the fleet size and mix pollution location-inventory-routing problem. Expert Systems with Applications, 153 , 113444.
- Karakostas, P., Sifaleras, A., & Georgiadis, C. (2022). Variable neighborhood search-based solution methods for the pollution location-inventory-routing problem. Optimization Letters, 16 , 211-235.
- Khuller, S., Malekian, A., & Mestre, J. (2007). To Fill or Not to Fill: The Gas Station Problem. In L. Arge, M. Hoffmann, & E. Welzl (Eds.), Algorithms -ESA 2007, LNCS . Berlin, Heidelberg: Springer volume 4698.
- Koç, C., Bektaş, T., Jabali, O., & Laporte, G. (2014). The fleet size and mix pollution-routing problem. Transportation Research Part B , 70 , 239-254.
- Kowalik, P., Sobecki, G., Bawol, P., & Muzolf, P. (2023). A Flow-Based Formulation of the Travelling Salesman Problem with Penalties on Nodes. Sustainability, 15 , 4330.
- Menéndez, B., Bustillo, M., Pardo, E. G., & Duarte, A. (2017). General variable neighborhood search for the order batching and sequencing problem. European Journal of Operational Research, 263 , 82-93.
- Mladenović, N., Todosijević, R., & Urosević, D. (2014). Two level General variable neighborhood search for Attractive traveling salesman problem. Computers & Operations Research, 52 , 341-348.
- Neves-Moreira, F., Amorim-Lopes, M., & Amorim, P. (2020). The multi-period vehicle routing problem with refueling decisions: Traveling further to decrease fuel cost? Transportation Research Part E: Logistics and Transportation Review , 133 , 101817.
- Or, I. (1976). Traveling Salesman-Type Combinatorial Problems and Their Relation to the Logistics of Regional Blood Banking. Ph.D. thesis Department of Industrial Engineering and Management Sciences, Northwestern University Evanston, IL.
- Ottoni, A., Nepomuceno, E., Oliveiral, M., & Oliveira, D. (2022). Reinforcement learning for the traveling salesman problem with refueling. Complex & Intelligent Systems, 8 , 655-687.
- Sahin, M. (2023). Solving TSP by using combinatorial bees algorithm with nearest neighbor method. Neural Computing and Applications, 35 , 1863-1879.
- Schiffer, M., Schneider, M., & Laporte, G. (2018). Designing sustainable mid-haul logistics networks with intra-route multi-resource facilities. European Journal of Operational Research, 265 , 517-532.
- Speranza, M. (2018). Trends in transportation and logistics. European Journal of Operational Research, 264 , 830-836.
- Suzuki, Y. (2012). A decision support system of vehicle routing and refueling for motor carriers with time-sensitive demands. Decision Support Systems, 54 , 758-767.
- Suzuki, Y. (2014). A variable-reduction technique for the fixed-route vehicle-refueling problem. Computers & Industrial Engineering, 67 , 204-215.
- Todosijević, R., Mladenović, M., Hanafi, S., Mladenović, N., & Crévits, I. (2016). Adaptive general vari- able neighborhood search heuristics for solving the unit commitment problem. International Journal of Electrical Power & Energy Systems, 78 , 873-883.