Academia.eduAcademia.edu

Outline

Analysis of terrain using multispectral images

1997, Pattern Recognition

https://doi.org/10.1016/S0031-3203(95)00152-2

Abstract

Automated terrain analysis is required for many practical applications, such as outdoor navigation, image exploitation, remote sensing, reconnaissance and surveillance. In this paper, we present a hierarchical approach to analyze multispectral (MS) imagery for autonomous land vehicle navigation. The approach integrates several strategies to label various terrain classes in these images acquired using twelve spectral bands in the visible and near-infrared spectrum. At the low (pixel) level, it combines texture gradient results from specifically selected channels by varying the size of gradient operators and performing multithresholding and relaxation-based edge linking operations to obtain robust closed region boundaries. At the high (symbolic) level, it makes use of the spectral, locational, and relational constraints among regions to achieve accurate terrain image interpretation. Details of the technique with examples from real imagery collected by an autonomous land vehicle (ALV) are presented.

References (37)

  1. E. D. Dickmanns and B.D. Mysliwetz, Recursive 3-D road and relative ego-state recognition, IEEE Trans. Pattern Analysis Mach. Intell. 14(2), 199-213 (1992).
  2. C. A. Harlow, M.H. Trivedi, R. A. Conners and D. Phillips, Scene analysis of high resolution aerial scenes, Optical Engng 25(3), 347-355 (1986).
  3. D. A. Landgrebe, Analysis technology for land remote sensing, Proc. IEEE 69(5), 628-642 (1981).
  4. M. D. Levine and A. M. Nazif, Low level image segmentation: An expert system, IEEE Trans. Pattern Analysis Mach. Intell. PAMI-6(5), 555-577 (1985).
  5. Y. Ohta, Knowledge-based Interpretation of Outdoor Natural Scenes. Pitman, London (1985).
  6. S.M. Rubin, Natural scene recognition using locus search, Comput. Graphics Image Process. 13, 298-333 (1980).
  7. D. M. McKeown, Jr. Knowledge based aerial photo interpretation, Photogrammetria 39, 91-123 (1984).
  8. M. Nagao and T. Matsuyama, A Structural Analysis of Complex Aerial Photographs, Plenum Press, New York (1980).
  9. W.A. Perkins, T. J. Laffey and T. A. Nguyen, Rule-based interpretation of aerial photographs using the Lockheed Expert System, Optical Engng 25(3), 356-362 (1986).
  10. L. Sauer and J. Taskett, Cultural feature and syntax analysis for automatic acquisition, SPIE Conf. Processing of Images and Data from Optical Sensors 292, 270-276 (1981).
  11. J. Ton, J. Stridden and A.K. Jain, Knowledge-based Segmentation of Landsat Images, IEEE Trans. Geoscience Remote Sensing GE-29(2), 222-232 (1991).
  12. R. M. Hord, Remote Sensing Methods and Applications. Wiley, New York (1986).
  13. R H. Swain, Advanced interpretation techniques for earth data information systems, Proc. IEEE 73(6), 1031-1039 (1985).
  14. J.A. Richards, D. A. Landgrebe and P. H. Swain, Pixel labeling by supervised probabilistic relaxation, IEEE Trans. Pattern Analysis Mach. Intell. PAMI-3, 181-191 (1981).
  15. A. Rosenfeld, C-Y. Wang and A. Wu, Multispectral texture, IEEE Trans. Systems Man Cybernet. SMC-12(1), 79-84 (1982).
  16. J. M. Brayer, P. H. Swain and K. S. Fu, Modeling earth resources with satellite data, in Syntactic Pattern Recognition Applications, K. S. Fu, ed. Springer, Berlin (1977).
  17. 2". Kusaka and Y. Kawata, Hierarchical classification of LANDSAT TM image using spectral and spatial informa- tion, Int. Geoscience and Remote Sensing Symposium (IGARSS '91), 2187-2190 (June 1991).
  18. P. Meyer, Segmentation and symbolic description for a classification of agricultural areas with multispectral scanner data, IEEE Trans. Geoscience and Remote Sensing GE-30(4), 673-679 (1992).
  19. D. D. Giusto, L. Parodi and G. Vemazza, Accurate segmentation of multispectral remote sensing images, (June 1989).
  20. M. C. Zhang, R. M. Haralick and J. B. Campbell, Multispectral image context classification using stochastic relaxation, IEEE Trans. Systems Man Cybernet. SMC- 20(1), 128-140 (1990).
  21. M. Goldberg, D. G. Goodenough, M. Alvo and G. M. Karam, A hierarchical expert system for updating forestry maps with landsat data, Proc. IEEE 73(6), 1054-1063 (1985).
  22. A. Rangarajan, R. Chellappa and B. S. Manjunath, Random fields and neural networks with applications to early vision, in Artificial Neural Networks and Statistical Pattern Recognition: Old and New Connections, I. K. Sethi and A. K. Jain, Eds. Elsevier Science, New York (1991) .
  23. C.A. Therrien, An estimation-theoretic approach to terrain image segmentation, Comput. Graphics Image Process. 22, 313-326 (1983).
  24. K.V. Mardia and T. J. Hainsworth, Spatial thresholding method for image segmentation, IEEE Trans. Pattern Analysis Mach. Intell. PAMI-10(6), 919-927 (1988).
  25. C. Bouman and M. Shapiro, Multispectral image segmen- tation using a multiscale model, Proc. IEEE Int. Conf. Acoustics Speech Signal Process., 565-568 (March 1992).
  26. R. A. Fernandes and M. E. Jernigan, Unsupervised multiscale segmentation of multispectral imagery, Proc. IEEE-SP Int. Syrup. Time-Frequency and Time-Scale Analysis, 547-550 (October 1992).
  27. M. Amadasum and R. A. King, Low-level segmentation of multispectral images via agglomerative clustering of uniform neighborhoods, Pattern Recognition 21(3), 261- 268 (1988).
  28. H. Hanaizumi, H. Okumura, H. Tsubaki and S. Fujimura, A supervised classification algorithm for remotely sensed multispectral images by using spatial segmentation, Proc. Second lnt. Syrup. Noise and Clutter Rejection in Radars and lmaging Sensors, 136-141 (November 1989).
  29. C. Salvaggio and J. R. Schott, Automated segmentation of pseudoinvea'se features from multispectral imagery, Proc. SPIE Three-Dimensional Imaging and Remote Sensing Imaging 902, 118-127 (January 1988).
  30. M. H. Brill, Object-based segmentation and color recogni- tion in multispectral images, Proc. SPIE Image Under- standing and the Man-Machine Interface H 1076, 97-103 (January 1989).
  31. J. A. Allison, COLLAGE: A collection of sensor images for the ALV test area, Technical Report, Martin Marietta Corporation (December 1985).
  32. J. N. Prinker, J. P. Henley and M. B. Satterwhite, Terrain data base--Air photo analysis, Martin Marietta ALV Test Site, Technical Report, Martin Marietta Corporation (January 1986).
  33. D. Zuk and L. Harmon, Active multispectral 3-D sensor design, Technical Paper from Environmental Research Institute of Michigan, Ann Arbor, Michigan (November 1986).
  34. W. Au, S. Mader and R. Whillock, Scene analysis, Third Triannual Technical Report to Center for Night Vision and Electro-Optics, Contract No. DAAL01-85-C-0429, Honey- well Systems and Research Center, Minneapolis (July 1986).
  35. M. DeGroot, Probability and Statistics. Addison-Wesley, Reading, Massachusetts (1975).
  36. J. Lowrie, The autonomous land vehicle--Second quarterly report, Technical Report, Martin Marietta Corporation (September 1985).
  37. B. Bhanu, P. Symosek, J. Ming, W. Burger, H. Nasr and J. Kim, Qualitative target motion detection and tracking, Proc. DARPA Image Understanding Workshop, 370-398 (May 1989).