Academia.eduAcademia.edu

Outline

Spectroscopy of A=9 hyperlithium with the (e,e′K+) reaction

2021, Physical Review C

https://doi.org/10.1103/PHYSREVC.103.L041301

Abstract

Missing mass spectroscopy with the (e, e ′ K +) reaction was performed at Jefferson Laboratory's Hall C for the neutron rich Λ hypernucleus 9 Λ Li. The ground-state (g.s.) energy was obtained to be B g.s.

FAQs

sparkles

AI

What are the new insights regarding Λ binding energies in 9 Λ Li?add

The research reports a ground state binding energy of B Hall-C Λ (9 Λ Li; g.s.) = 8.84 ± 0.17 MeV, resolved using specific experimental assumptions of state production ratios.

How does the production cross-section relate to doublet energy states in 9 Λ Li?add

The production cross-section for the 5/2 + 1 state is estimated to be 5-7 times larger than that of the ground state 3/2 + 1, emphasizing the significance of the ΛN -ΣN coupling.

What methodology was utilized in the missing mass spectroscopy of 9 Λ Li?add

Missing mass spectroscopy was conducted using the (e, e′ K+) reaction, with a continuous 2.344-GeV electron beam and a target of 9 Be, achieving momentum resolutions of ∆p/p ≃ 2 × 10^-4.

How did calibration affect the accuracy of binding energy measurements?add

Systematic errors for the Λ binding energy measurements were evaluated as ∆B sys. Λ = 0.11 MeV following a rigorous Monte Carlo simulation approach to ensure high accuracy in calibration.

What does the energy separation between hypernuclei indicate about charge symmetry breaking?add

The measured difference in binding energies for the A=9 isotriplet hypernuclei suggests a potentially large charge symmetry breaking effect, indicated by B Λ (9 Λ B; g.s.) - B Hall-C Λ (9 Λ Li; g.s.) = -0.55 ± 0.29 MeV.

References (44)

  1. G. Alexander et al., Phys. Rev. 173, 1452 (1968).
  2. K. Miwa et al., Proposal to J-PARC, E40 Experiment (2011).
  3. A. Esser et al. (A1 Collaboration), Phys. Rev. Lett. 114, 232501 (2015).
  4. F. Schulz et al. (A1 Collaboration), Nucl. Phys. A954, 149 (2016).
  5. T.O. Yamamoto et al. (J-PARC E13 Collaboration), Phys. Rev. Lett. 115, 222501 (2015).
  6. B.F. Gibson, A. Goldberg, and M. S. Weiss, Phys. Rev. C 6, 741 (1972).
  7. Y. Akaishi, T. Harada, S. Shinmura, and K. Swe Myint, Phys. Rev. Lett. 84, 3539 (2000).
  8. A. Nogga et al., Phys. Rev. Lett. 88, 17 (2002).
  9. A. Umeya and T. Harada, Phys. Rev. C 83, 034310 (2011).
  10. M. Agnello et al. (FINUDA Collaboration), Phys. Rev. Lett. 108, 042501 (2012).
  11. H. Sugimura et al. (J-PARC E10 Collaboration), Phys. Lett. B 729, 39-44 (2014).
  12. R. Honda et al. (J-PARC E10 Collaboration), Phys. Rev. C 96, 014005 (2017).
  13. P.K. Saha et al., Phys. Rev. Lett. 94, 052502 (2005).
  14. R.H. Dalitz and F. Von Hippel, Phys. Lett. 10, 1 (1964).
  15. A.R. Bodmer and Q.N. Usmani, Phys. Rev. C 31, 1400 (1985).
  16. D. Gazda and A. Gal, Phys. Rev. Lett. 116, 122501 (2016).
  17. E. Hiyama, Few-Body Syst. 53:189-236 (2012).
  18. A. Gal, Phys. Lett. B 744, 352-357 (2015).
  19. E. Botta et al., Nucl. Phys. A960, 165-179 (2017).
  20. T. Gogami et al., Nucl. Instrum. Methods Phys. Res. A 900, 69-83 (2018).
  21. T. Gogami et al. (HKS (JLab E05-115) Collaboration), Phys. Rev. C 94, 021302(R) (2016).
  22. T. Gogami et al. (HKS (JLab E05-115) Collaboration), Phys. Rev. C 93, 034314 (2016).
  23. L. Tang et al. (HKS (JLab E05-115 and E01-011) Col- laborations), Phys. Rev. C 90, 034320 (2014).
  24. Y. Fujii et al., Nucl. Instrum. Methods Phys. Res., Sect. A 795, 351-363 (2015).
  25. P.A. Zyla et al. (Particle Data Group), Prog. Theor. Exp. Phys. 2020, 083C01 (2020).
  26. S. Agostinelli et al., Nucl. Instrum. Methods Phys. Res., Sect. A 506, 3, 250-303 (2003).
  27. J. Allison et al., Nucl. Instrum. Methods Phys. Res., Sect. A 835, 186-225 (2016).
  28. T. Gogami et al., Nucl. Instrum. Methods Phys. Res., Sect. A 729, 816-824 (2013).
  29. M. Wang et al., Chin. Phys. C 41, 030003 (2017).
  30. S.N. Nakamura et al. (HKS (JLab E01-011) Collabora- tion), Phys. Rev. Lett. 110, 012502 (2013).
  31. M. Sotona and S. Frullani, Prog. Theor. Phys. Suppl. 117, 151 (1994).
  32. T. Motoba et al., Prog. Theor. Phys. Suppl. 185, 224 (2010).
  33. G.-B. Liu and H.T. Fortune, Phys. Rev. C 38, 1985 (1988).
  34. D.J. Millener, Nucl. Phys. A881, 298-309 (2012).
  35. J. Pniewski et al., Nucl. Phys. A443, 685-690 (1985).
  36. G.M. Urciuoli et al (Jefferson Lab Hall A Collaboration), Phys. Rev. C 91, 034308 (2015).
  37. F. Garibaldi et al. (Jefferson Lab Hall A Collaboration), Phys. Rev. C 99, 054309 (2019).
  38. X.Y. Chen et al., J. Phys. G: Nucl. Part. Phys. 46, 125106 (2019).
  39. D.R. Tilley et al., Nucl. Phys. A745, 155-362 (2004).
  40. M. Isaka, Y. Yamamoto, and T. Motoba, Phys. Rev. C 101, 024301 (2020).
  41. H. Stöwe and W. Zahn, Nucl. Phys. A289, 317-328 (1977).
  42. P. Bydžovský (private communication).
  43. D. Skoupil and P. Bydžovský, Phys. Rev. C 97, 025202 (2018).
  44. K. Hosomi et al., Prog. Theor. Exp. Phys. 2015(8), 081D01 (2015).