Academia.eduAcademia.edu

Outline

Feedback data rates for nonlinear systems

2003, 2003 European Control Conference (ECC)

https://doi.org/10.23919/ECC.2003.7085032

Abstract

This paper poses a simple question: what is the lowest rate, in bits per unit time, at which feedback information can be transmitted in order to stabilise a given dynamical system? Expressions for this fundamental quantity have recently been derived for linear systems, with and without noise. In this work, the case of deterministic, fully observed, continuously differentiable dynamical systems is investigated, under the additional assumptions of controllability to the desired set-point and bounded initial states. By the use of volume-partitioning arguments and local Jordan forms, the infimum feedback data rate is shown to be the base-2 logarithm of the magnitude of the determinant of the open-loop Jacobian on the local unstable subspace, evaluated at the set-point. Connections to the concept of local topological feedback entropy are briefly discussed.

References (20)

  1. J. Baillieul. Feedback designs in information- based control. In B. Pasik-Duncan, editor, Stochastic Theory and Control Proceedings of a Workshop held in Lawrence, Kansas, pages 35-57. Springer, Oct 2001.
  2. R. W. Brockett and D. Liberzon. Quantized feedback stabilization of linear systems. IEEE Trans. Autom. Contr., 45(7):1279-89, 2000.
  3. D. F. Delchamps. Stabilizing a linear system with quantized state feedback. IEEE Trans. Au- tom. Contr., 35:916-24, 1990.
  4. N. Elia and S. K. Mitter. Stabilization of lin- ear systems with limited information. IEEE Trans. Autom. Contr., 46:1384-400, 2001.
  5. F. Fagnani and S. Zampieri. Stabilizing quantized feedback with minimal information flow: the scalar case. In Proc. 15th
  6. Int. Symp. Math. The. Netw. Sys., U. Notre Dame, USA, Aug. 2002.
  7. J. Hespanha, A. Ortega, and L. Vasude- van. Towards the control of linear sys- tems with minimum bit-rate. In Proc. 15th
  8. Int. Symp. Math. The. Netw. Sys., U. Notre Dame, USA, Aug 2002.
  9. R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press, 1985.
  10. H. Ishii and B. A. Francis. Quadratic stabiliza- tion of sampled-data systems with quantization. In Proc. 15th IFAC World Cong., Barcelona, 2002. Also to appear in Automatica, 2003.
  11. D. Liberzon. On stabilization of linear sys- tems with limited information. IEEE Trans. Au- tom. Contr., 48(2):304-7, 2003.
  12. G. N. Nair and R. J. Evans. Stabilization with data-rate-limited feedback: tightest attainable bounds. Sys. Contr. Lett., 41(1):49-56, Sep 2000.
  13. G. N. Nair and R. J. Evans. Mean square stabilisability of stochastic linear systems with data rate constraints. In Proc. 41st IEEE Conf. Dec. Contr., pages 1632-7, Las Vegas, USA, Dec 2002.
  14. G. N. Nair and R. J. Evans. Exponential stabil- isability of finite-dimensional linear systems with limited data rates. Automatica, 39:585-93, Apr. 2003.
  15. G. N. Nair, R. J. Evans, I. M. Y. Mareels, and W. Moran. Topological feedback entropy and non- linear stabilization. IEEE Trans. Autom. Contr., pages 1585-97, Sep. 2004. In Special Issue on Net- worked Control Systems.
  16. I. R. Petersen and A. V. Savkin. Multi-rate stabi- lization of multivariable discrete-time linear sys- tems via a limited capacity communication chan- nel. In Proc. 40th IEEE Conf. Dec. Contr., pages 304-9, 2001.
  17. C. E. Shannon. A mathematical theory of commu- nication. Bell Syst. Tech. Jour., 1948. Reprinted in 'Claude Elwood Shannon Collected Papers', IEEE Press, 1993.
  18. S. Tatikonda and S. Mitter. Control under com- munication constraints. In Proc. 38th Ann. Aller- ton Conf. Comm. Contr. Comp., pages 182-90, Oct 2000.
  19. T. Ward. Entropy of Compact Group Automor- phisms. Dept. Mathematics, Uni. East Anglia, UK, 1994. Based on notes for course at Ohio State Uni., USA. Available at www.mth.uea.ac.uk/h 720/lecture notes/.
  20. W. S. Wong and R. W. Brockett. Systems with finite communication bandwidth constraints II: stabilization with limited information feedback. IEEE Trans. Autom. Contr., 44:1049-53, 1999.