Academia.eduAcademia.edu

Outline

Coalescence dynamics of unequal sized drops

2019, Physics of Fluids

https://doi.org/10.1063/1.5064516

Abstract

In this study, coalescence dynamics of two unequal sized drops of the same liquid have been investigated using the coupled level set and volume of fluid method. A broad range of fluid properties is considered with two orders of magnitude variation of Ohnesorge numbers and Atwood number ranging between 0.01 and 0.9976. The pinch-off process and controlling parameters that lead to satellite generation have been investigated. The capillary waves are generated as a result of the sharp curvature produced near the contact region. Here we demonstrate that the capillary waves propagating along the interface of the lower drop can affect the eventual pinch-off of the satellite. The local curvature of the neck plays a crucial role in the pinch-off process. A sharper axial curvature of the neck increases the local capillary pressure which restricts the pinch-off. The critical diameter ratio above which a satellite pinches off during the coalescence of two free-falling drops increases with incre...

References (77)

  1. A. M. Worthington, A Study of Splashes (Longmans, Green, and Co., 1908).
  2. G. E. Charles and S. G. Mason, "The coalescence of liquid drops with flat liquid/liquid interfaces," J. Colloid Sci. 15, 236-267 (1960).
  3. G. E. Charles and S. G. Mason, "The mechanism of partial coales- cences of liquid drop at liquid/liquid interfaces," J. Colloid Sci. 15, 105-122 (1960).
  4. R. M. Schotland, "Experimental results relating to the coalescence of water drops with water surfaces," Discuss. Faraday Soc. 30, 72-77 (1960).
  5. S. T. Thoroddsen and K. Takehara, "The coalescence cascade of a drop," Phys. Fluids 12, 1265-1267 (2000).
  6. D. Morton, M. Rudman, and L. Jong-Leng, "An investigation of the flow regimes resulting from splashing drops," Phys. Fluids 12, 747-763 (2000).
  7. X. Chen, S. Mandre, and J. J. Feng, "An experimental study of the coales- cence between a drop and an interface in Newtonian and polymeric liquids," Phys. Fluids 18, 092103 (2006).
  8. B. Ray, G. Biswas, and A. Sharma, "Regimes during liquid drop impact on a liquid pool," J. Fluid Mech. 768, 492-523 (2015).
  9. H. Deka, B. Ray, G. Biswas, and A. Dalal, "Dynamics of tongue shaped cavity generated during the impact of high-speed microdrops," Phys. Fluids 30, 042103 (2018).
  10. A. I. Fedorchenko and A.-B. Wang, "On some common features of drop impact on liquid surfaces," Phys. Fluids 16, 1349-1365 (2004).
  11. K. L. Pan and C. K. Law, "Dynamics of droplet-film collision," J. Fluid Mech. 587, 1-22 (2007).
  12. X. Tang, A. Saha, C. K. Law, and C. Sun, "Nonmonotonic response of drop impacting on liquid film: Mechanism and scaling," Soft Matter 12, 4521-4529 (2016).
  13. X. Tang, A. Saha, C. K. Law, and C. Sun, "Bouncing-to-merging transition in drop impact on liquid film: Role of liquid viscosity," Langmuir 34, 2654-2662 (2018).
  14. H. Yang, C. C. Park, Y. T. Hu, and L. G. Leal, "The coalescence of two equal- sized drops in a two-dimensional linear flow," Phys. Fluids 13, 1087-1106 (2001).
  15. F. Baldessari, G. Homsy, and L. G. Leal, "Linear stability of a draining film squeezed between two approaching droplets," J. Colloid Interface Sci. 307, 188-202 (2007).
  16. Y. Yoon, F. Baldessari, H. D. Ceniceros, and L. G. Leal, "Coalescence of two equal-sized deformable drops in an axisymmetric flow," Phys. Fluids 19, 102102 (2007).
  17. A. S. Hsu, A. Roy, and L. G. Leal, "Drop-size effects on coalescence of two equal-sized drops in a head-on collision," J. Rheol. 52, 1291-1310 (2008).
  18. A. Ramachandran and L. G. Leal, "Effect of interfacial slip on the thin film drainage time for two equal-sized, surfactant-free drops undergo- ing a head-on collision: A scaling analysis," Phys. Rev. Fluids 1, 064204 (2016).
  19. J. J. Thomson and H. F. Newall, "On formation of vortex rings by drops falling into liquids, and some allied phenomena," Proc. R. Soc. London 39, 417-436 (1885).
  20. E. M. Honey and H. P. Kavehpour, "Astonishing life of a coalescing drop on a free surface," Phys. Rev. E 73, 027301 (2006).
  21. P. Pikhitsa and A. Tsargorodskaya, "Possible mechanism for multistage coalescence of a floating droplet on the air/liquid interface," Colloids Surf., A 167, 287-291 (2000).
  22. E. X. Berry and R. L. Reinhardt, "An analysis of cloud drop growth by col- lection: Part III. Accretion and self-collection," J. Atmos. Sci. 31, 2118-2126 (1974).
  23. F. Raes, R. V. Dingenen, E. Vignati, J. Wilson, J.-P. Putaud, J. H. Seinfeld, and P. Adams, "Formation and cycling of aerosols in the global troposphere," Atmos. Environ. 34, 4215-4240 (2000).
  24. T. Sarpkaya, "Vorticity, free surface, and surfactants," Annu. Rev. Fluid Mech. 28, 83-128 (1996).
  25. H. Deka, G. Biswas, and A. Dalal, "Formation and penetration of vortex ring on drop coalescence," in ASME International Mechanical Engineering Congress and Exposition (ASME, 2016), Vol. 7, p. V007T09A003.
  26. H. Deka, B. Ray, G. Biswas, A. Dalal, P.-H. Tsai, and A.-B. Wang, "The regime of large bubble entrapment during a single drop impact on a liquid pool," Phys. Fluids 29, 092101 (2017).
  27. H. P. Kavehpour, "Coalescence of drops," Annu. Rev. Fluid Mech. 47, 245-268 (2015).
  28. Lord Rayleigh, "On the instability of jets," Proc. London Math. Soc. s1-10, 4-13 (1878).
  29. X. Chen, S. Mandre, and J. J. Feng, "Partial coalescence between a drop and a liquid-liquid interface," Phys. Fluids 18, 051705-1-051705-4 (2006).
  30. J. B. Keller and M. J. Miksis, "Surface tension driven flows," SIAM J. Appl. Math. 43, 268-277 (1983).
  31. J. B. Keller, P. A. Milewski, and J.-M. Vanden-Broeck, "Merging and wetting driven by surface tension," Eur. J. Mech.: B/Fluids 19, 491-502 (2000).
  32. L. Duchemin, J. Eggers, and C. Josserand, "Inviscid coalescence of drops," J. Fluid Mech. 487, 167-178 (2003).
  33. F. Blanchette and T. P. Bigioni, "Partial coalescence of drops at liquid interfaces," Nat. Phys. 2, 254-257 (2006).
  34. B. Ray, G. Biswas, and A. Sharma, "Generation of secondary droplets in coalescence of a drop at a liquid-liquid interface," J. Fluid Mech. 655, 72-104 (2010).
  35. Y. J. Jiang, A. Umemura, and C. K. Law, "An experimental investigation on the collision behaviour of hydrocarbon droplets," J. Fluid Mech. 234, 171-190 (1992).
  36. J. Qian and C. K. Law, "Regimes of coalescence and separation in droplet collision," J. Fluid Mech. 331, 59-80 (1997).
  37. L. G. Leal, "Flow induced coalescence of drops in a viscous fluid," Phys. Fluids 16, 1833-1851 (2004).
  38. C. Tang, P. Zhang, and C. K. Law, "Bouncing, coalescence, and separa- tion in head-on collision of unequal-size droplets," Phys. Fluids 24, 022101 (2012).
  39. G. D. M. Mackay and S. G. Mason, "The gravity approach and coales- cence of fluid drops at liquid interfaces," Can. J. Chem. Eng. 41, 203-212 (1963).
  40. A. V. Anilkumar, C. P. Lee, and T. G. Wang, "Surface tension induced mix- ing following coalescence of initially stationary drops," Phys. Fluids A 3, 2587-2591 (1991).
  41. J. Eggers, J. R. Lister, and H. A. Stone, "Coalescence of liquid drops," J. Fluid Mech. 401, 293-310 (1999).
  42. D. Liu, P. Zhang, C. K. Law, and Y. Guo, "Collision dynamics and mixing of unequal-size droplets," Int. J. Heat Mass Transfer 57, 421-428 (2013).
  43. A. H. Rajkotwala, H. Mirsandi, E. A. J. F. Peters, M. W. Baltussen, C. W. M. van der Geld, J. G. M. Kuerten, and J. A. M. Kuipers, "Extension of local front reconstruction method with controlled coalescence model," Phys. Fluids 30, 022102 (2018).
  44. J. C. Burton and P. Taborek, "Role of dimensionality and axisym- metry in fluid pinch-off and coalescence," Phys. Rev. Lett. 98, 224502 (2007).
  45. J. D. Paulsen, J. C. Burton, and S. R. Nagel, "Viscous to inertial crossover in liquid drop coalescence," Phys. Rev. Lett. 106, 114501 (2011).
  46. D. G. A. L. Aarts, H. N. W. Lekkerkerker, H. Guo, G. H. Wegdam, and D. Bonn, "Hydrodynamics of droplet coalescence," Phys. Rev. Lett. 95, 164503 (2005).
  47. S. T. Thoroddsen, K. Takehara, and T. G. Etoh, "The coalescence speed of a pendent and a sessile drop," J. Fluid Mech. 527, 85-114 (2005).
  48. S. C. Case and S. R. Nagel, "Coalescence in low-viscosity liquids," Phys. Rev. Lett. 100, 084503 (2008).
  49. M. Wu, T. Cubaud, and C.-M. Ho, "Scaling law in liquid drop coalescence driven by surface tension," Phys. Fluids 16, L51-L54 (2004).
  50. A. Menchaca-Rocha, A. Martínez-D ávalos, R. N ú ñez, S. Popinet, and S. Zaleski, "Coalescence of liquid drops by surface tension," Phys. Rev. E 63, 046309 (2001).
  51. J. D. Paulsen, R. Carmigniani, A. Kannan, J. D. Burton, and S. R. Nagel, "Coalescence of bubbles and drops in an outer fluid," Nat. Commun. 5, 3182 (2014).
  52. X. Cheng, Y. Zhu, L. Zhang, D. Zhang, and T. Ku, "Numerical analysis of deposition frequency for successive droplets coalescence dynamics," Phys. Fluids 30, 042102 (2018).
  53. P. M. Somwanshi, K. Muralidhar, and S. Khandekar, "Coalescence dynam- ics of sessile and pendant liquid drops placed on a hydrophobic surface," Phys. Fluids 30, 092103 (2018).
  54. Y. Chen and Y. Lian, "Numerical investigation of coalescence-induced self-propelled behavior of droplets on non-wetting surfaces," Phys. Fluids 30, 112102 (2018).
  55. R. Attarzadeh and A. Dolatabadi, "Coalescence-induced jumping of micro- droplets on heterogeneous superhydrophobic surfaces," Phys. Fluids 29, 012104 (2017).
  56. S. T. Thoroddsen, B. Qian, T. G. Etoh, and K. Takehara, "The initial coalescence of miscible drops," Phys. Fluids 19, 072110 (2007).
  57. F. Blanchette and T. P. Bigioni, "Dynamics of drop coalescence at fluid interfaces," J. Fluid Mech. 620, 333-352 (2009).
  58. F. H. Zhang, E. Q. Li, and S. T. Thoroddsen, "Satellite formation during coalescence of unequal size drops," Phys. Rev. Lett. 102, 104502 (2009).
  59. M. Sussman and E. G. Puckett, "A coupled level set and volume-of-fluid method for computing 3D and axisymmetric incompressible two-phase flows," J. Comput. Phys. 162, 301-337 (2000).
  60. D. Gerlach, G. Tomar, G. Biswas, and F. Durst, "Comparison of volume-of- fluid methods for surface tension-dominant two-phase flows," Int. J. Heat Mass Transfer 49, 740-754 (2006).
  61. C. W. Hirt and B. Nichols, "Volume of fluid (VOF) method for the dynamics of free boundaries," J. Comput. Phys. 39, 201-225 (1981).
  62. S. Osher and J. A. Sethian, "Fronts propagating with curvature dependent speed," J. Comput. Phys. 79, 12-49 (1988).
  63. J. U. Brackbill, D. B. Kothe, and C. Zemach, "A continuum method for modeling surface tension," J. Comput. Phys. 100, 335-354 (1992).
  64. F. H. Harlow and J. E. Welch, "Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface," Phys. Fluids 8, 2182- 2189 (1965).
  65. Y. C. Chang, T. Y. Hou, B. Meriman, and S. Osher, "A level set formula- tion of Eulerian interface capturing methods for incompressible fluid flows," J. Comput. Phys. 124, 449-464 (1996).
  66. Hypre 2.0.0 User Manual, Silver ed., Center for Applied Science Comput- ing, Lawrence Livermore National Laboratory, USA, 2006.
  67. E. G. Puckett, A. S. Almgren, J. B. Bell, D. L. Marcus, and W. J. Rider, "A high- order projection method for tracking fluid interfaces in variable density incompressible flows," J. Comput. Phys. 130, 269-282 (1997).
  68. W. J. Rider and D. B. Kothe, "Reconstructing volume tracking," J. Comput. Phys. 141, 112-152 (1998).
  69. G. Strang, "On the construction and comparison of difference schemes," SIAM J. Numer. Anal. 5, 506-517 (1968).
  70. G. Son and N. Hur, "A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles," Numer. Heat Transfer, Part B 42, 523-542 (2002).
  71. G. Son, "Efficient implementation of a coupled level-set and volume- of-fluid method for three-dimensional incompressible two-phase flows," Numer. Heat Transfer, Part B 43, 549-565 (2003).
  72. T. Gilet, K. Mulleners, J. P. Lecomte, N. Vandewalle, and S. Dorbolo, "Crit- ical parameters for the partial coalescence of a droplet," Phys. Rev. E 75, 036303 (2007).
  73. A. Moreno Soto, T. Maddalena, A. Fraters, D. van der Meer, and D. Lohse, "Coalescence of diffusively growing gas bubbles," J. Fluid Mech. 846, 143-165 (2018).
  74. H. Ding, E. Q. Li, F. H. Zhang, Y. Sui, P. D. M. Spelt, and S. T. Thoroddsen, "Propagation of capillary waves and ejection of small droplets in rapid droplet spreading," J. Fluid Mech. 697, 92-114 (2012).
  75. F. H. Zhang and S. T. Thoroddsen, "Satellite generation during bubble coalescence," Phys. Fluids 20, 022104 (2008).
  76. F. H. Zhang, M.-J. Thoraval, S. T. Thoroddsen, and P. Taborek, "Partial coalescence from bubbles to drops," J. Fluid Mech. 782, 209-239 (2015).
  77. T. Dong, H. W. Weheliye, P. Chausset, and P. Angeli, "An experimental study on the drop/interface partial coalescence with surfactants," Phys. Fluids 29, 102101 (2017).