Academia.eduAcademia.edu

Outline

E-Super Vertex Magic Regular Graphs of Odd Degree

2015, Electronic Notes in Discrete Mathematics

https://doi.org/10.1016/J.ENDM.2015.05.008

Abstract

Let G = (V, E) be a finite simple graph with p vertices and q edges, without isolated vertices or isolated edges. A vertex magic total labeling is a bijection f from V ∪ E to the consecutive integers 1, 2, • • • , p + q, with the property that, for every vertex u ∈ V , one has f (u) + uv∈E f (uv) = k for some constant k. The vertex magic total labeling is called E-super if f (E) = {1, 2, • • • , q}. In this paper we verify the existence of E-super vertex magic total labeling for odd regular graphs containing a particular 3-factor.

References (12)

  1. J.A. Gallian, A dynamic survey of graph labeling, Electron. J. Combin., 16 (2013), #DS6.
  2. J. Gomez, Solution of the conjecture: if n ≡ 0 (mod 4), n > 4, then K n has a super vertex magic total labeling, Discrete Math., 307 (2007), 2525-2534.
  3. J. Gomez, Two new methods to obtain super vertex-magic total labelings of graphs, Discrete Math., 308 (2008), 3361-3372.
  4. I.D. Gray, Vertex-Magic Total Labelings of Regular Graphs, SIAM Journal on Discrete Math., 21(1) (2007), 170-177.
  5. J. Ivančo, A. Semaničová , Some constructions of supermagic graphs using antimagic graphs, SUT J. Math., 42(2) (2006), 177-186.
  6. G. Marimuthu and M. Balakrishnan, E-super vertex magic labelings of graphs, Discrete Applied Math., 160 (2012), 1766-1774.
  7. G. Marimuthu and G. Kumar, Solution to some open problems on E-super vertex magic labeling of disconnected graphs, manuscript, 2014.
  8. J.A. MacDougall, M. Miller, Slamin and W.D. Wallis, Vertex magic total labelings of graphs, Util. Math., 61 (2002), 3-21.
  9. J. Sedláček, Problem 27, Theory of Graphs and its Applications, Proc. Symposium, (1963), 163-167.
  10. A.C. Slamin, Prihandoko, T.B. Setiawan, F. Rosita, and B. Shaleh, Vertex- magic Total Labelings of Disconnected Graphs, Journal of Prime Research in Mathematics, 2 (2006), 147-156
  11. V. Swaminathan, P. Jeyanthi, Super vertex magic labeling, Indian J. Pure Appl. Math., 34(6) (2003), 935-939.
  12. T.-M. Wang and G.-H. Zhang, Note on E-super Vertex Magic Graphs, Discrete Appl. Math., 178 (2014), 160-162.