Academia.eduAcademia.edu

Outline

Results of dark matter search using the full PandaX-II exposure *

2020, Chinese Physics C

https://doi.org/10.1088/1674-1137/ABB658

Abstract

We report the dark matter search results obtained using the full 132 ton·day exposure of the PandaX-II experiment, including all data from March 2016 to August 2018. No significant excess of events is identified above the expected background. Upper limits are set on the spin-independent dark matter-nucleon interactions. The lowest 90% confidence level exclusion on the spin-independent cross section is 2.2 × 10−46 cm2 at a WIMP mass of 30 GeV/c2.

References (37)

  1. Gianfranco Bertone, Dan Hooper, and Joseph Silk. Particle dark matter: Evidence, candidates and constraints. Phys. Rept., 405:279-390, 2005.
  2. Jianglai Liu, Xun Chen, and Xiangdong Ji. Current status of direct dark matter detection experiments. Nature Phys., 13(3):212-216, 2017.
  3. Andi Tan et al. Dark Matter Results from First 98.7 Days of Data from the PandaX-II Experiment. Phys. Rev. Lett., 117(12):121303, 2016.
  4. D. S. Akerib et al. Results from a search for dark matter in the complete LUX exposure. Phys. Rev. Lett., 118(2):021303, 2017.
  5. E. Aprile et al. First Dark Matter Search Results from the XENON1T Experiment. 2017.
  6. Xiangyi Cui et al. Dark Matter Results From 54-Ton-Day Exposure of PandaX-II Experiment. Phys. Rev. Lett., 119(18):181302, 2017.
  7. E. Aprile et al. Dark Matter Search Results from a One Ton-Year Exposure of XENON1T. Phys. Rev. Lett., 121(11):111302, 2018.
  8. Andi Tan et al. Dark Matter Search Results from the Commissioning Run of PandaX-II. Phys. Rev., D93(12):122009, 2016.
  9. Yu-Cheng Wu et al. Measurement of Cosmic Ray Flux in China JinPing underground Laboratory. Chin. Phys., C37(8):086001, 2013.
  10. Wenbo Ma et al. Internal Calibration of the PandaX-II Detector with Radon Gaseous Sources. 6 2020.
  11. Xiang Xiao et al. Low-mass dark matter search results from full exposure of the PandaX-I experiment. Phys. Rev., D92(5):052004, 2015.
  12. S. Agostinelli et al. GEANT4: A Simulation toolkit. Nucl. Instrum. Meth., A506:250- 303, 2003.
  13. John Allison et al. Geant4 developments and applications. IEEE Trans. Nucl. Sci., 53:270, 2006.
  14. Kaixiang Ni et al. Searching for neutrino-less double beta decay of 136 Xe with PandaX- II liquid xenon detector. Chin. Phys. C, 43(11):113001, 2019.
  15. E. Aprile, C.E. Dahl, L. DeViveiros, R. Gaitskell, K.L. Giboni, J. Kwong, P. Majewski, Kaixuan Ni, T. Shutt, and M. Yamashita. Simultaneous measurement of ionization and scintillation from nuclear recoils in liquid xenon as target for a dark matter experiment. Phys. Rev. Lett., 97:081302, 2006.
  16. M. Szydagis, J. Balajthy, J. Brodsky, J. Cutter, J. Huang, E. Kozlova, B. Lenardo, A. Manalaysay, D. McKinsey, M. Mooney, J. Mueller, K. Ni, G. Rischbieter, M. Tri- pathi, C. Tunnell, V. Velan, and Z. Zhao. Noble element simulation technique v2.0, July 2018.
  17. Brian Lenardo, Kareem Kazkaz, Matthew Szydagis, and Mani Tripathi. A Global Analysis of Light and Charge Yields in Liquid Xenon. IEEE Trans. Nucl. Sci., 62:3387, 2015.
  18. Laura Baudis, Hrvoje Dujmovic, Christopher Geis, Andreas James, Alexander Kish, Aaron Manalaysay, Teresa Marrodan Undagoitia, and Marc Schumann. Response of liquid xenon to Compton electrons down to 1.5 keV. Phys. Rev. D, 87(11):115015, 2013.
  19. Qing Lin, Jialing Fei, Fei Gao, Jie Hu, Yuehuan Wei, Xiang Xiao, Hongwei Wang, and Kaixuan Ni. Scintillation and ionization responses of liquid xenon to low energy electronic and nuclear recoils at drift fields from 236 V/cm to 3.93 kV/cm. Phys. Rev. D, 92(3):032005, 2015.
  20. D. S. Akerib et al. Tritium calibration of the LUX dark matter experiment. Phys. Rev., D93(7):072009, 2016.
  21. L.W. Goetzke, E. Aprile, M. Anthony, G. Plante, and M. Weber. Measurement of light and charge yield of low-energy electronic recoils in liquid xenon. Phys. Rev. D, 96(10):103007, 2017.
  22. A. Manzur, A. Curioni, L. Kastens, D.N. McKinsey, K. Ni, and T. Wongjirad. Scintil- lation efficiency and ionization yield of liquid xenon for mono-energetic nuclear recoils down to 4 keV. Phys. Rev. C, 81:025808, 2010.
  23. Peter Sorensen. A coherent understanding of low-energy nuclear recoils in liquid xenon. JCAP, 09:033, 2010.
  24. E. Aprile et al. Response of the XENON100 Dark Matter Detector to Nuclear Recoils. Phys. Rev. D, 88:012006, 2013.
  25. D. S. Akerib et al. Low-energy (0.7-74 keV) nuclear recoil calibration of the LUX dark matter experiment using D-D neutron scattering kinematics. 2016.
  26. E. Aprile, M. Anthony, Q. Lin, Z. Greene, P. De Perio, F. Gao, J. Howlett, G. Plante, Y. Zhang, and T. Zhu. Simultaneous measurement of the light and charge response of liquid xenon to low-energy nuclear recoils at multiple electric fields. Phys. Rev. D, 98(11):112003, 2018.
  27. Qinyu Wu et al. Update of the trigger system of the PandaX-II experiment. JINST, 12(08):T08004, 2017.
  28. Qiuhong Wang et al. An Improved Evaluation of the Neutron Background in the PandaX-II Experiment. Sci. China Phys. Mech. Astron., 63(3):231011, 2020.
  29. Byron P. Roe, Hai-Jun Yang, Ji Zhu, Yong Liu, Ion Stancu, and Gordon McGregor. Boosted decision trees, an alternative to artificial neural networks. Nucl. Instrum. Meth. A, 543(2-3):577-584, 2005.
  30. D. Zhang. Estimating the surface backgrounds in PandaX-II WIMP search data. JINST, 14(10):C10039, 2019.
  31. E. Aprile et al. Likelihood Approach to the First Dark Matter Results from XENON100. Phys. Rev., D84:052003, 2011.
  32. Christopher Savage, Katherine Freese, and Paolo Gondolo. Annual Modulation of Dark Matter in the Presence of Streams. Phys. Rev. D, 74:043531, 2006.
  33. Thomas Junk. Confidence level computation for combining searches with small statis- tics. Nucl. Instrum. Meth. A, 434:435-443, 1999.
  34. Glen Cowan, Kyle Cranmer, Eilam Gross, and Ofer Vitells. Power-Constrained Limits. 2011.
  35. Hongguang Zhang et al. Dark matter direct search sensitivity of the PandaX-4T ex- periment. Sci. China Phys. Mech. Astron., 62(3):31011, 2019.
  36. E. Aprile et al. Physics reach of the XENON1T dark matter experiment. JCAP, 04:027, 2016.
  37. B.J. Mount et al. LUX-ZEPLIN (LZ) Technical Design Report. 3 2017.