Academia.eduAcademia.edu

Outline

Moebius-Invariant Natural Neighbor Interpolation

2002, arXiv (Cornell University)

Abstract

We propose an interpolation method that is invariant under Moebius transformations; that is, interpolation followed by transformation gives the same result as transformation followed by interpolation. The method uses natural (Delaunay) neighbors, but weights neighbors according to angles formed by Delaunay circles.

References (7)

  1. M. Bern and D. Eppstein. Optimal Möbius transformation for information visualization and meshing. 7th Workshop on Algorithms and Data Structures, 2001. LNCS 2125, Springer-Verlag, 14-25.
  2. M.K. Hurdal, P.L. Bowers, K. Stephenson, D.W.L. Summers, K. Rehm, K. Shaper, and D.A. Rottenberg. Quasi-conformally flat mapping the human cerebellum. http://www.math.fsu.edu/ ∼ aluffi/archive/paper98.ps.gz
  3. B. Iversen. Hyperbolic Geometry. London Math. Soc. Student Texts 25. Cambridge Univ. Press, 1992.
  4. J. Lamping, R. Rao, and P. Pirolli. A focus + context technique based on hyperbolic geometry for viewing large hierarchies. Proc. ACM Conf. Human Factors in Computing Systems, 1995, pp. 401-408.
  5. T. Munzner. Exploring large graphs in 3D hyperbolic space. IEEE Comp. Graphics Appl. 18:18-23, 1997.
  6. C. Pommerenke. Boundary Behaviour of Conformal Maps. Springer-Verlag, 1992.
  7. R. Sibson. A brief description of natural neighbour interpolation. In Interpreting Multivariate Data, V. Barnett, ed., Wiley, 1981, 21-36.