Proof of FLT for exponent 3
2021, Kvaternion
Abstract
The proof of Fermat's Last Theorem for exponent 3 is based on the fact that Fermat's Diophantine sum equation x^3+y^3+z^3=0 is equivalent to the product form equation (3k)^3=(x+y+z)^3=3(x+y)(z+x)(z+y), where x+y,z+x,z+y are coprime integers. The non existence of a common divisor means that two out of the three numbers x+y,z+x,z+y must be perfect cubes. The article was published in Czech language in the mathematical journal Kvaternion published by the Institute of Mathematics FSI VUT in Brno, ISSN 1805-1324 (printed version), ISSN 1805-1332 (on-line) http://kvaternion.fme.vutbr.cz/2021/kv21_1-2_golan_web.pdf
References (6)
- N. F. Benschop: Additive structure of the group of units mod pk with core and carry concepts for extension to integers, Acta Math. Univ. Comenian. 74 (2005), No. 2, 169-184.
- A. Lósch: The Economics of Location, Yale University Press, 1954.
- P. Ribenboim: Fermat's Last Theorem for Amateurs, Springer-Verlag, New York, 1999.
- R. Taylor, A. Wiles: Ring-theoretic properties of certain Hecke algebras, Ann. of Math. 141 (1995), 553-572.
- A. Wiles: Modular elliptic curves and Fermat's Last Theorem, Ann. of Math. 141 (1995), 443-551.
- Petr Golan, Praha; autor je bývalý vědecký pracovník Výzkumného ústavu matematických strojů v Praze, následně byl jednatelem společností VUMS Computers, APOGEE.CZ a Apogee Software, nyní je v důchodu, e-mail: petrgolan@volny.cz