Pore surface engineering in covalent organic frameworks
2011, Nature Communications
https://doi.org/10.1038/NCOMMS1542Abstract
Covalent organic frameworks (CoFs) are a class of important porous materials that allow atomically precise integration of building blocks to achieve pre-designable pore size and geometry; however, pore surface engineering in CoFs remains challenging. Here we introduce pore surface engineering to CoF chemistry, which allows the controlled functionalization of CoF pore walls with organic groups. This functionalization is made possible by the use of azideappended building blocks for the synthesis of CoFs with walls to which a designable content of azide units is anchored. The azide units can then undergo a quantitative click reaction with alkynes to produce pore surfaces with desired groups and preferred densities. The diversity of click reactions performed shows that the protocol is compatible with the development of various specific surfaces in CoFs. Therefore, this methodology constitutes a step in the pore surface engineering of CoFs to realize pre-designed compositions, components and functions.
References (39)
- McKeown, N. B. et al. Polymers of intrinsic microporosity (PIMs): bridging the void between polymers and microporous materials. Chem. Eur. J. 11, 2610-2620 (2005).
- Weber, J., Kreuer, K., Maier, J. & Thomas, A. Proton conductivity enhancement by nanostructural control of poly(benzimidazole)-phosphoric acid adducts. Adv. Mater. 20, 2595-2598 (2008).
- Schmidt, J., Weber, J., Epping, J. D., Antonietti, M. & Thomas, A. Microporous conjugated poly(thienylene arylene) networks. Adv. Mater. 21, 702-705 (2009).
- Ben, T. et al. Targeted synthesis of a porous aromatic framework with high stability and exceptionally high surface area. Angew. Chem. Int. Ed. 48, 9457-9460 (2009).
- Cooper, A. I. Conjugated microporous polymers. Adv. Mater. 21, 1291-1295 (2009).
- Ritter, N., Antonietti, M., Thomas, A., Senkovska, I., Kaskel, S. & Weber, J. Binaphthalene-based, soluble polyimides: the limits of intrinsic microporosity. Macromolecules 42, 8017-8020 (2009).
- Schwab, M. G. et al. Photocatalytic hydrogen evolution through fully conjugated poly(azomethine) networks. Chem. Commun. 46, 8932-8934 (2010).
- Trewin, A. & Cooper, A. I. Porous organic polymers: distinction from disorder? Angew. Chem. Int. Ed. 49, 1533-1535 (2010).
- Chen, L., Honsho, Y., Seki, S. & Jiang, D. Light-harvesting conjugated microporous polymers: rapid and highly efficient flow of light energy with a porous polyphenylene framework as antennae. J. Am. Chem. Soc. 132, 6742-6748 (2010).
- Chen, L., Yang, Y. & Jiang, D. CMPs as scaffolds for constructing porous catalytic frameworks: a built-in heterogeneous catalyst with high activity and selectivity based on nanoporous metalloporphyrin polymers. J. Am. Chem. Soc. 132, 9138-9143 (2010).
- Holst, J. R., Trewin, A. & Cooper, A. I. Porous organic molecules. Nat. Chem. 2, 915-920 (2010).
- Jones, J. T. A. et al. On-off porosity switching in a molecular organic solid. Angew. Chem. Int. Ed. 50, 749-753 (2011).
- Zhao, H., Jin, Z., Su, H., Jing, X., Sun, F. & Zhu, G. Targeted synthesis of a 2D ordered porous organic framework for drug release. Chem. Commun. 47, 6389-6391 (2011).
- Kou, Y., Xu, Y., Guo, Z. & Jiang, D. Supercapacitive energy storage and electric power supply using an aza-fused conjugated microporous framework. Angew. Chem., Int. Ed. 50, 8753-8757 (2011).
- Côté, A. P., Benin, A. I., Ockwig, N. W., O'Keeffe, M., Matzger, A. J. & Yaghi, O. M Porous, crystalline, covalent organic frameworks. Science 310, 1166-1170 (2005).
- Tilford, R. W., Gemmill, W. R., zur Loye, H. C. & Lavigne, J. J. Facile synthesis of a highly crystalline, covalently linked porous boronate network. Chem. Mater. 18, 5296-5301 (2006).
- El-Kaderi, H. M. et al. Designed synthesis of 3D covalent organic frameworks. Science 316, 268-272 (2007).
- Côté, A. P., El-Kaderi, H. M., Furukawa, H., Hunt, J. R. & Yaghi, O. M. Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. J. Am. Chem. Soc. 129, 12914-12915 (2007).
- Tilford, R. W., Mugavero, S. J. III, Pellechia, P. J. & Lavigne, J. J. Tailoring microporosity in covalent organic frameworks. Adv. Mater. 20, 2741-2746 (2008).
- Han, S. S., Furukawa, H., Yaghi, O. M. & Goddard, W. A. III Covalent organic frameworks as exceptional hydrogen storage materials. J. Am. Chem. Soc. 130, 11580-11581 (2008).
- Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A belt-shaped, blue-luminescent and semiconducting covalent organic framework. Angew. Chem. Int. Ed. 47, 8826-8830 (2008).
- Mastalerz, M. The next generation of shape-persistent zeolite analogues: covalent organic frameworks. Angew. Chem. Int. Ed. 47, 445-447 (2008).
- Kuhn, P., Antonietti, M. & Thomas, A. Porous, covalent triazine-based frameworks prepared by ionothermal synthesis. Angew. Chem. Int. Ed. 47, 3450-3453 (2008).
- Uribe-Romo, F. J., Hunt, J. R., Furukawa, H., Klock, C., O′Keeffe, M. & Yaghi, O. M. Crystalline imine-linked 3-D porous covalent organic framework. J. Am. Chem. Soc. 131, 4570-4571 (2009).
- Wan, S., Guo, J., Kim, J., Ihee, H. & Jiang, D. A photoconductive covalent organic framework: self-condensed arene cubes with eclipsed 2D polypyrene sheets for photocurrent generation. Angew. Chem. Int. Ed. 48, 5439-5442 (2009).
- Gutzler, R., Walch, H., Eder, G., Kloft, S., Heckl, W. M. & Lackinger, M. Surface mediated synthesis of 2D covalent organic frameworks: 1,3,5-tris(4- bromophenyl)benzene on graphite(001), Cu(111), and Ag(110). Chem. Commun. 29, 4456-4458 (2009).
- Klontzas, E., Tylianakis, E. & Froudakis, G. E. Designing 3D COFs with enhanced hydrogen storage capacity. Nano Lett. 10, 452-454 (2010).
- Spitler, E. L. & Dichtel, W. R. Lewis acid-catalysed formation of two- dimensional phthalocyanine covalent organic frameworks. Nature Chem. 2, 672-677 (2010).
- Doonan, C. J., Tranchemontagne, D. J., Glover, T. G., Hunt, J. H. & Yaghi, O. M. Exceptional ammonia uptake by a covalent organic framework. Nature Chem. 2, 235-238 (2010).
- Ding, X. et al. Synthesis of metallophthalocyanine covalent organic frameworks that exhibit high carrier mobility and photoconductivity. Angew. Chem. Int. Ed. 50, 1289-1293 (2011).
- Feng, X., Chen, L., Dong, Y. & Jiang, D. Porphyrin-based two-dimensional covalent organic frameworks: synchronized synthetic control of macroscopic structures and pore parameters. Chem. Commun. 47, 1979-1981 (2011).
- Dogru, M., Sonnauer, A., Gavryushin, A., Knochelb, P. & Bein, T. A covalent organic framework with 4 nm open pores. Chem. Commun. 47, 1707-1709 (2011).
- Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 32, 228-231 (2011).
- Ding, X. et al. An n-channel two-dimensional covalent organic framework. J. Am. Chem. Soc. 133, 14510-14513 (2011).
- Goto, Y., Sato, H., Shinkai, S. & Sada, K. 'Clickable' metal-organic framework. J. Am. Chem. Soc. 130, 14354-14355 (2008).
- Gadzikwa, T., Farha, O. K., Malliakas, C. D., Kanatzidis, M. G., Hupp, J. T. & Nguyen, S. T. Selective bifunctional modification of a non-catenated metal- organic framework material via "click" chemistry. J. Am. Chem. Soc. 131, 13613-13615 (2009).
- Kolb, H. C., Finn, M. G. & Sharpless, K. B. Click chemistry: diverse chemical function from a few good reactions. Angew. Chem. Int. Ed. 40, 2004-2021 (2001).
- Frisch, M. J. et al. ( Gaussian 03, Revision C.02,, Gaussian, Inc., 2004).
- Accelrys. Material Studio Release Notes, Release 4.4 (Accelrys Software, 2008).