Academia.eduAcademia.edu

Outline

Expansiveness, Lyapunov exponents and entropy for set valued maps

2017, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.1709.05739

Abstract

In this paper, we define Lyapunov exponents for continuous set-valued maps defined on a Peano space, give a notion of expansiveness for a set-valued map F : X X defined on a topological space X different from that given by Richard Williams, and prove that the topological entropy of an expansive set-valued map defined on a Peano space of positive dimension is strictly positive. We define the Lyapunov exponent for set-valued maps and prove that the positiveness of its Lyapunov exponent implies positiveness for the topological entropy.

References (25)

  1. M. Abid, Un theorème ergodique pour des processus sous-additifs et sur- stationnaires,C.R. Acad. Sci. Paris,Serie A 287, 1978, 149-152.
  2. AF] J.P. Aubin, H. Frankowska, Set-valued analysis, , Birkhauser 1990.
  3. J.P. Aubin, H. Fankowska, A. Lasota, Poincaré's recurrence theorem for set- valued dynamical systems, Ann. Polon. Math., 54 (1991), p. 85-91.
  4. A. Artigue, M.J.Pacifico, J.L.Vieitez, N -Expansive Homeomorphisms on Surfaces, Communications in contemporary mathematics, v. 19 1 (2017), p. -.
  5. J.P. Aubin, Mathematical Methods of Game and Economic Theory, Stud. Math. Appl., 7 North-Holland.1982
  6. E.A. Barbashin, On the theory of generalized dynamical systems, Uch. Zap. Moskow. Gos. Uniw., No. 135 (1949), p. 110-133.
  7. R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lecture Notes in Math, 470, 1975.
  8. L. Barreira, C. Silva, Lyapunov Exponents for Continuous Transformations and Dimension Theory, Discrete Contin. Dyn. Syst., 13 (2005), p. 469-490.
  9. D. Carrasco-Olivera, R. Metzger, C. Morales, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst., 20 No. 10 (2015), p. 3461-3474.
  10. W. Cordeiro, M.J. Pacifico, Continuum wise expansiveness and specification for set-valued maps, arxiv.org/pdf/1510.07615 , 2015 .
  11. Górniewicz, L., Topological Fixed Point Theory of Multivalued Maps, , Springer 2006.
  12. K. D. Joshi, Introduction to General Topology, , Willey 1983.
  13. J.F.Jakobsen, W. R. Utz, The non-existence of expansive homeomorphisms on a closed 2-cell, Pacific J. Math., 10 (1960), p. 1319-1321.
  14. A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathematiques de IHES, 51 (1980), p. 137-173.
  15. Y. Kifer, Characteristic exponents of dynamical systems in metric spaces, Ergodic Theory and Dynamical Systems, 3 p. 119-127.
  16. Lewowicz, J., Persistence in Expansive Systems, Erg. Th. & Dyn. Sys., 3 (1983), p. 567-578.
  17. W. Miller, E. Akin, Invariant Measures for Set-Valued Dynamical Systems, Transactions of the AMS, 351, No. 3 (1999), p. 1203-1225.
  18. S. Nadler Jr., Hyperspaces of Sets,, Marcel Dekker Inc., New York and Basel (1978), p. -.
  19. M. J. Pacifico, J. Vieitez, Lyapunov exponents for expansive homeomorphisms, Proceedings of the Edinburgh Mathematical Society , (2020), p. 1-13.
  20. E. Roxin, Stability in general control systems, Journal of Differential Equations, 1 (1965), p. 115-150.
  21. B. Raines, T. Tennant, The specification property on a set-valued map and its inverse limit, ArXiV: 1509.08415v1, 2015 .
  22. K. Schürger, A limit theorem for almost monotone sequences of random vari- ables, Stochastic Processes and their Applications, 21 (1986), p. 327-338.
  23. R.K. Williams, Some results on expansive mappings, Proceedings of the American Mathematical Society, Vol. 26 No. 4 (1970), p. 655-663.
  24. R.K. Williams, A note on expansive mappings, Proceedings of the American Math- ematical Society, Vol. 26 No. 4 (1969), p. 145-147.
  25. M. J. Pacifico, J. L. Vieitez, Instituto de Matematica, Instituto de Matematica, Universidade Federal do Rio de Janeiro, Facultad de Ingenieria, C. P. 68.530, CEP 21.945-970, Universidad de la Republica, Rio de Janeiro, R. J. , Brazil. CC30, CP 11300, Montevideo, Uruguay pacifico@im.ufrj.br jvieitez@fing.edu.uy