Expansiveness, Lyapunov exponents and entropy for set valued maps
2017, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1709.05739Abstract
In this paper, we define Lyapunov exponents for continuous set-valued maps defined on a Peano space, give a notion of expansiveness for a set-valued map F : X X defined on a topological space X different from that given by Richard Williams, and prove that the topological entropy of an expansive set-valued map defined on a Peano space of positive dimension is strictly positive. We define the Lyapunov exponent for set-valued maps and prove that the positiveness of its Lyapunov exponent implies positiveness for the topological entropy.
References (25)
- M. Abid, Un theorème ergodique pour des processus sous-additifs et sur- stationnaires,C.R. Acad. Sci. Paris,Serie A 287, 1978, 149-152.
- AF] J.P. Aubin, H. Frankowska, Set-valued analysis, , Birkhauser 1990.
- J.P. Aubin, H. Fankowska, A. Lasota, Poincaré's recurrence theorem for set- valued dynamical systems, Ann. Polon. Math., 54 (1991), p. 85-91.
- A. Artigue, M.J.Pacifico, J.L.Vieitez, N -Expansive Homeomorphisms on Surfaces, Communications in contemporary mathematics, v. 19 1 (2017), p. -.
- J.P. Aubin, Mathematical Methods of Game and Economic Theory, Stud. Math. Appl., 7 North-Holland.1982
- E.A. Barbashin, On the theory of generalized dynamical systems, Uch. Zap. Moskow. Gos. Uniw., No. 135 (1949), p. 110-133.
- R. Bowen, Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer Lecture Notes in Math, 470, 1975.
- L. Barreira, C. Silva, Lyapunov Exponents for Continuous Transformations and Dimension Theory, Discrete Contin. Dyn. Syst., 13 (2005), p. 469-490.
- D. Carrasco-Olivera, R. Metzger, C. Morales, Topological entropy for set-valued maps, Discrete Contin. Dyn. Syst., 20 No. 10 (2015), p. 3461-3474.
- W. Cordeiro, M.J. Pacifico, Continuum wise expansiveness and specification for set-valued maps, arxiv.org/pdf/1510.07615 , 2015 .
- Górniewicz, L., Topological Fixed Point Theory of Multivalued Maps, , Springer 2006.
- K. D. Joshi, Introduction to General Topology, , Willey 1983.
- J.F.Jakobsen, W. R. Utz, The non-existence of expansive homeomorphisms on a closed 2-cell, Pacific J. Math., 10 (1960), p. 1319-1321.
- A. Katok, Lyapunov exponents, entropy and periodic orbits for diffeomorphisms, Publications Mathematiques de IHES, 51 (1980), p. 137-173.
- Y. Kifer, Characteristic exponents of dynamical systems in metric spaces, Ergodic Theory and Dynamical Systems, 3 p. 119-127.
- Lewowicz, J., Persistence in Expansive Systems, Erg. Th. & Dyn. Sys., 3 (1983), p. 567-578.
- W. Miller, E. Akin, Invariant Measures for Set-Valued Dynamical Systems, Transactions of the AMS, 351, No. 3 (1999), p. 1203-1225.
- S. Nadler Jr., Hyperspaces of Sets,, Marcel Dekker Inc., New York and Basel (1978), p. -.
- M. J. Pacifico, J. Vieitez, Lyapunov exponents for expansive homeomorphisms, Proceedings of the Edinburgh Mathematical Society , (2020), p. 1-13.
- E. Roxin, Stability in general control systems, Journal of Differential Equations, 1 (1965), p. 115-150.
- B. Raines, T. Tennant, The specification property on a set-valued map and its inverse limit, ArXiV: 1509.08415v1, 2015 .
- K. Schürger, A limit theorem for almost monotone sequences of random vari- ables, Stochastic Processes and their Applications, 21 (1986), p. 327-338.
- R.K. Williams, Some results on expansive mappings, Proceedings of the American Mathematical Society, Vol. 26 No. 4 (1970), p. 655-663.
- R.K. Williams, A note on expansive mappings, Proceedings of the American Math- ematical Society, Vol. 26 No. 4 (1969), p. 145-147.
- M. J. Pacifico, J. L. Vieitez, Instituto de Matematica, Instituto de Matematica, Universidade Federal do Rio de Janeiro, Facultad de Ingenieria, C. P. 68.530, CEP 21.945-970, Universidad de la Republica, Rio de Janeiro, R. J. , Brazil. CC30, CP 11300, Montevideo, Uruguay pacifico@im.ufrj.br jvieitez@fing.edu.uy