Quivers with potentials and their representations I: Mutations
2008, Selecta Mathematica-new Series
https://doi.org/10.1007/S00029-008-0057-9Abstract
We study quivers with relations given by non-commutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein-Gelfand-Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi-Yau algebras, cluster algebras.
References (29)
- A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52.
- D. Berenstein and M.R. Douglas, Seiberg Duality for Quiver Gauge Theories, hep-th/0207027.
- J. Bernstein, I. Gelfand and V. Ponomarev, Coxeter functors and Gabriel's theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19-33.
- R. Bocklandt, Graded Calabi Yau Algebras of dimension 3, math.RA/0603558.
- R. Bocklandt and L. Le Bruyn, Necklace Lie algebras and noncommutative symplectic geom- etry, Math. Z. 240 (2002), no. 1, 141-167.
- V. Braun, On Berenstein-Douglas-Seiberg Duality, J. High Energy Phys. 2003, no. 1, 082, 21 pp.
- A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.
- A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Tran. Amer. Math. Soc. 359 (2007), no. 1, 323-332.
- A. B. Buan, R. Marsh and I. Reiten Cluster-tilted algebras of finite representation type, J. of Algebra. 306 (2006), no. 2, 412-431.
- A. B. Buan, R. Marsh and I. Reiten, Cluster mutation via quiver representations, math.RT/0412077.
- C.R. Butler and C.M. Ringel, Auslander-Reiten sequences with few middle terms and appli- cations to string algebras, Comm. Algebra 15 (1987), 269-290.
- P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595-616.
- P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations and cluster tilted algebras, Algebras and Rep. Theory 9 (2006), 359-376.
- P. Caldero and B. Keller, From triangulated categories to cluster algebras, math.RT/0506018.
- P. Caldero and B. Keller, From triangulated categories to cluster algebras II, math.RT/0510251.
- P. Caldero, A. Zelevinsky, Laurent expansions in cluster algebras via quiver representations, Moscow Math. J. 6 (2006), no. 3, 411-429.
- M.R. Douglas and G. Moore, D-branes, Quivers and ALE Instantons, hep-th/9603167.
- S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
- S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63-121.
- S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Comp. Math. 143 (2007), 112-164.
- K.R. Fuller, Biserial Rings, Lecture Notes in Mathematics, 734, Springer, Berlin, 1979, 64-90.
- C. Geiss, B. Leclerc and J. Schröer, Auslander algebras and initial seeds for cluster algebras, math.RT/0506405.
- I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, 1994.
- V. Ginzburg, Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett. 8 (2001), no. 3, 377-400.
- V. Ginzburg, Calabi-Yau algebras, math.AG/0612139.
- O. Iyama and I. Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, math.RT/0605136.
- B. Keller and I. Reiten, Acyclic Calabi-Yau categories, math.RT/0610594.
- R. Marsh, M. Reineke and A. Zelevinsky, Generalized associahedra via quiver representations. Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171-4186.
- G.-C. Rota, B. Sagan and P. Stein, A cyclic derivative in noncommutative algebra. J. Algebra 64 (1980), no. 1, 54-75.