Academia.eduAcademia.edu

Outline

Quivers with potentials and their representations I: Mutations

2008, Selecta Mathematica-new Series

https://doi.org/10.1007/S00029-008-0057-9

Abstract

We study quivers with relations given by non-commutative analogs of Jacobian ideals in the complete path algebra. This framework allows us to give a representation-theoretic interpretation of quiver mutations at arbitrary vertices. This gives a far-reaching generalization of Bernstein-Gelfand-Ponomarev reflection functors. The motivations for this work come from several sources: superpotentials in physics, Calabi-Yau algebras, cluster algebras.

References (29)

  1. A. Berenstein, S. Fomin and A. Zelevinsky, Cluster algebras III: Upper bounds and double Bruhat cells, Duke Math. J. 126 (2005), 1-52.
  2. D. Berenstein and M.R. Douglas, Seiberg Duality for Quiver Gauge Theories, hep-th/0207027.
  3. J. Bernstein, I. Gelfand and V. Ponomarev, Coxeter functors and Gabriel's theorem, Uspehi Mat. Nauk 28 (1973), no. 2(170), 19-33.
  4. R. Bocklandt, Graded Calabi Yau Algebras of dimension 3, math.RA/0603558.
  5. R. Bocklandt and L. Le Bruyn, Necklace Lie algebras and noncommutative symplectic geom- etry, Math. Z. 240 (2002), no. 1, 141-167.
  6. V. Braun, On Berenstein-Douglas-Seiberg Duality, J. High Energy Phys. 2003, no. 1, 082, 21 pp.
  7. A. B. Buan, R. Marsh, M. Reineke, I. Reiten and G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.
  8. A. B. Buan, R. Marsh and I. Reiten, Cluster-tilted algebras, Tran. Amer. Math. Soc. 359 (2007), no. 1, 323-332.
  9. A. B. Buan, R. Marsh and I. Reiten Cluster-tilted algebras of finite representation type, J. of Algebra. 306 (2006), no. 2, 412-431.
  10. A. B. Buan, R. Marsh and I. Reiten, Cluster mutation via quiver representations, math.RT/0412077.
  11. C.R. Butler and C.M. Ringel, Auslander-Reiten sequences with few middle terms and appli- cations to string algebras, Comm. Algebra 15 (1987), 269-290.
  12. P. Caldero and F. Chapoton, Cluster algebras as Hall algebras of quiver representations, Comment. Math. Helv. 81 (2006), no. 3, 595-616.
  13. P. Caldero, F. Chapoton and R. Schiffler, Quivers with relations and cluster tilted algebras, Algebras and Rep. Theory 9 (2006), 359-376.
  14. P. Caldero and B. Keller, From triangulated categories to cluster algebras, math.RT/0506018.
  15. P. Caldero and B. Keller, From triangulated categories to cluster algebras II, math.RT/0510251.
  16. P. Caldero, A. Zelevinsky, Laurent expansions in cluster algebras via quiver representations, Moscow Math. J. 6 (2006), no. 3, 411-429.
  17. M.R. Douglas and G. Moore, D-branes, Quivers and ALE Instantons, hep-th/9603167.
  18. S. Fomin and A. Zelevinsky, Cluster algebras I: Foundations, J. Amer. Math. Soc. 15 (2002), 497-529.
  19. S. Fomin and A. Zelevinsky, Cluster algebras II: Finite type classification, Invent. Math. 154 (2003), 63-121.
  20. S. Fomin and A. Zelevinsky, Cluster algebras IV: Coefficients, Comp. Math. 143 (2007), 112-164.
  21. K.R. Fuller, Biserial Rings, Lecture Notes in Mathematics, 734, Springer, Berlin, 1979, 64-90.
  22. C. Geiss, B. Leclerc and J. Schröer, Auslander algebras and initial seeds for cluster algebras, math.RT/0506405.
  23. I. Gelfand, M. Kapranov and A. Zelevinsky, Discriminants, Resultants and Multidimensional Determinants, Birkhäuser Boston, 1994.
  24. V. Ginzburg, Non-commutative symplectic geometry, quiver varieties, and operads, Math. Res. Lett. 8 (2001), no. 3, 377-400.
  25. V. Ginzburg, Calabi-Yau algebras, math.AG/0612139.
  26. O. Iyama and I. Reiten, Fomin-Zelevinsky mutation and tilting modules over Calabi-Yau algebras, math.RT/0605136.
  27. B. Keller and I. Reiten, Acyclic Calabi-Yau categories, math.RT/0610594.
  28. R. Marsh, M. Reineke and A. Zelevinsky, Generalized associahedra via quiver representations. Trans. Amer. Math. Soc. 355 (2003), no. 10, 4171-4186.
  29. G.-C. Rota, B. Sagan and P. Stein, A cyclic derivative in noncommutative algebra. J. Algebra 64 (1980), no. 1, 54-75.