Standard methods for Apis mellifera honey research
2020, Journal of Apicultural Research
https://doi.org/10.1080/00218839.2020.1738135Abstract
Honey is an important food for man and has been used as a natural sweetener since ancient times. It is a viscous and aromatic product made by honey bees using the nectar of flowers or honeydew. Honey is composed of a complex mixture of carbohydrates and other substances such as organic acids, amino acids, proteins, minerals, vitamins, lipids, aroma compounds, flavonoids, pigments, waxes, pollen grains, several enzymes, and other phytochemicals. This chapter presents some properties of Apis mellifera honey as well as the main methods of honey analysis. All methods are based on specialized literature, including the Codex Alimentarius, AOAC, and publications of the International Honey Commission. Herein, we describe methods related to honey authenticity, botanical origin, geographical origin, physicochemical analysis, radioentomology, pesticide and antibiotic contamination, chemotherapeutics, and sensory analysis. All methods are described in a step-by-step model in order to facilitate their use. M etodos est andar para la investigaci on de la miel de Apis mellifera La miel es un alimento importante para el hombre y se ha utilizado como edulcorante natural desde la antig€ uedad. Es un producto viscoso y arom atico hecho por las abejas de la miel usando el n ectar de las flores o el roc ıo de miel. La miel est a compuesta por una mezcla compleja de carbohidratos y otras sustancias como acidos org anicos, amino acidos, prote ınas, minerales, vitaminas, l ıpidos, compuestos arom aticos, flavonoides, pigmentos, ceras, granos de polen, varias enzimas y otros fitoqu ımicos. En este cap ıtulo se presentan algunas propiedades de la miel de Apis mellifera, as ı como los principales m etodos de an alisis de la miel. Todos los m etodos se basan en literatura especializada, incluido el Codex Alimentarius, AOAC y publicaciones de la Comisi on Internacional de la Miel. A continuaci on, describimos m etodos relacionados con la autenticidad de la miel, el origen bot anico, el origen geogr afico, el an alisis fisicoqu ımico, la radioentomolog ıa, la contaminaci on por pesticidas y antibi oticos, la quimioterapia y el an alisis sensorial. Todos los m etodos se describen en un modelo paso a paso para facilitar su uso.
References (277)
- Organochlorines (a-, b-, and Ç-hexachlorocyclohexane (HCH), hexachlorobenzene (HCB), aldrin, p,p'-DDE, p,p'- DDD, o,p'-DDT and p,p'-DDT)
- Add 20 mL of ethyl acetate to the sample. Repeat the liquid- liquid extraction two times with 15 mL of ethyl acetate.
- Centrifuge at 3000 rpm for 10 min if emulsion is formed.
- Filtrate the organic phase through anhydrous sodium sulfate.
- Evaporate the organic phase under a stream of nitrogen to 2.5 mL for analysis in graduated centrifuge tube.
- Analyze by GC-ECD, and Gas Chromatography/Mass Spectrometry (GC-MS) for confirmatory analysis following authors' protocols.
- Blasco, Lino et al. (2004)
- Coumaphos, bromopropylate, amitraz and tau-fluvalinate
- Mix 20 g of honey in an Ultra-Turrax blender with a mixture of n-hexane (60 mL), propanol-2 (30 mL) and 0.28% of ammonia. The pH of this mixture is 8.
- Filter the solution through a filter paper.
- Repeat steps 1 and 2 with the mixture of n-hexane (60 mL), propanol-2 (30 mL) and 0.28% of ammonia.
- Rinse the Ultra-Turrax with 40 mL of n-hexane and filter this washing solution on the same filter paper as in step 2.
- Add 50 mL of distilled water and 0.28% of ammonia (pH 10).
- Shake the separating funnel vigorously.
- Allow the filtrate to separate into two phases.
- Discard the aqueous phase (lower).
- Analyze by HPLC-DAD following authors' protocol. Martel and Zeggane (2002) analyte under examination, such as GC-MS and LC-MS (De Brabander et al., 2009). Some compounds such as nitroimidazoles (Polzer et al., 2010), fumagillin (Daeseleire & Reybroeck, 2012;
- Kanda et al., 2011; Tarbin et al., 2010), and nitrofuran residues (Khong et al., 2004; Lopez et al., 2007; Tribalat et al., 2006) are mostly directly screened in honey using LC-MS/MS detection, since no or only few immuno- chemical methods for the detection in honey have been developed. By the development of multiresidue meth- ods, LC-MS is used more and more for multiclass screening for antimicrobial residues in honey (Azzouz & Ballesteros, 2015; Galarini et al., 2015; Hammel et al., 2008; Lopez et al., 2008).
- Table 19. Extraction and test protocol (laboratory test) for the Chloramphenicol ELISA (EuroProxima B.V.). Extraction protocol 1. Bring 10 ± 0.1 g of honey into a centrifugation tube of 50 mL; fill also a centrifugation tube with the same amount of blank honey, honey doped with 0.3 mg/kg of chloramphenicol, and honey doped with 0.1 mg/kg of chloramphenicol, respectively.
- Add to each sample 5 mL of distilled water.
- Vortex the samples until all honey is dissolved.
- Add 5 mL of ethyl acetate.
- Evaporate at 45 ± 5 C under a mild stream of nitrogen.
- Dissolve the residue in 2 mL of n-hexane for defatting purposes and vortex.
- Add 1 mL of reconstitution buffer and vortex for 20 s.
- After centrifugation (10 min at 2600 g), pipette the layer underneath (reconstitution buffer, ± 800 mL) into a short glass test tube.
- Add again 1 mL of n-hexane and vortex for 20 s.
- Add 1 mL of reconstitution buffer and vortex for 20 s.
- After centrifugation (10 min at 2,600 g), pipette the layer underneath (reconstitution buffer, ± 800 mL) into a short glass test tube.
- Use the extract in the ELISA (extract could be stored for one day at 4 ± 2 C). Test protocol 1. Before starting the test, the reagents should be brought up to ambient temperature by taking them out of the refrigerator $ 20 min before use. Keep the substrate away from light. After analysis, store the remaining reagents as soon as possible in the refrigerator.
- Identify the wells of the microtiterstrip upon the plate configuration sheet.
- Pipette 100 mL of reconstitution/zero standard buffer into well A1 (blank).
- Pipette 50 mL of reconstitution/zero standard buffer into well A2 (zero standard).
- Pipette 50 mL of chloramphenicol-free extract buffer into wells B1 and B2 (blank control sample).
- Pipette 50 mL of extract of samples doped at 0.1 mg/kg into wells C1 and C2 (positive control sample 0.1 ppb).
- Pipette 50 mL of extract of samples doped at 0.3 mg/kg into wells C1 and C2 (positive control sample 0.3 ppb).
- Pipette 50 mL of each sample extract in duplicate into the remaining wells of the microtiter plate.
- Add 25 of conjugate (CAP-HRPO) into all wells except in well A1.
- Add 25 of antibody solution into all wells except in well A1.
- Cover the plate with aluminum foil and shake the plate for 1 min.
- Discard the solution from the microtiter plate and wash three times with rinsing buffer. Fill all the wells each time with rinsing buffer to the rim. Place the inverted plate on absorbent paper and tap the plate firmly to remove residual washing solution. Take care that none of the wells dry out before the next reagent is dispensed.
- Shake the substrate solution before use. Pipette 100 mL of substrate solution into each well. Cover the plate and shake the plate slowly.
- Incubate for 30 min in the dark at room temperature (20-25 C).
- Add 10 mL of stop solution into each well.
- Read the absorbance values (OD) immediately at 450 nm in a spectrophotometer. Interpretation of results
- Subtract the optical density (OD) value of the blank well (A1) from the individual OD of the other wells.
- Calculate the Cut-off by adding 3xSD of repeatability for the positive control sample spiked at 0.3 ppb (value calculated out of the validation data) to the mean of both corrected OD values for the two positive control samples spiked at 0.3 ppb.
- Interpret the control samples: the negative control sample should test negative and the positive control sample spiked at 0.1 ppb should give an OD below the OD of the negative control and higher than the OD of the positive control sample at 0.3 ppb. The run is invalid if the control samples are not giving correct results.
- Compare the corrected value for each sample to the cut-off value. If the corrected OD of the sample is equal to or below the cut-off: the sample is considered as suspect for the presence of chloramphenicol at 0.3 mg/kg; if the corrected OD of the sample is higher than the cut-off: the sample is free from residues of chloramphenicol at 0.3 mg/kg.
- Table 20. Extraction and test protocol for Charm II Macrolide Honey Test (Charm Sciences Inc.). Honey sample preparation 1. Label a 50 mL conical centrifuge tube for each sample.
- Add 20 grams of honey to an appropriately labeled centrifuge tube. Also, prepare two negative control samples by using blank honey and one positive control sample of blank honey spiked with 20 mg/kg of erythromycin A.
- Add 30 mL MSU Extraction Buffer to each tube. Mix well until honey is completely dissolved by putting the samples for 30 min on a shaker or by vortexing the tubes.
- Add 9-10 drops of M2-buffer. Check pH with pH indicator strips; pH of extract should be equivalent to 7.5 (À8.0) on pH strip.
- If the pH is still too low, add M2 Buffer dropwise, mix, and retest pH until the desired pH is reached. Note: If pH is high, add 0.3 mL (300 mL) 0.1 M HCl, mix, and retest. If pH is still high, add 0.1 M HCl drop-wise, mix, and retest.
- Using the syringe assembly, filter the entire sample through a glass fiber filter (e.g., Millipore-Millex AP prefilter of 25 mm).
- Collect the entire sample into a clean container (50 mL conical tube or beaker).
- After the sample has been pushed through, detach the filter holder. Rinse syringe and bivalve with 10 mL deionized water. Clean-up over C18 cartridge
- Activate the C18 cartridge by pushing through 5.0 mL of methanol. The cartridge should be used within 10 min of activation.
- Repeat the washing step with 5.0 mL of water.
- Perform the extraction by adding the filtered honey solution to the syringe. Push the solution slowly through the preactivated C18 cartridge one drop at a time. The sample may be thick and difficult to push through the cartridge. Hold cartridge with two hands to prevent cartridge from popping off due to backpressure. Discard liquid that flows through the cartridge.
- Wash the cartridge with 5.0 mL distilled water and discard the flow through.
- Remove the C18 cartridge from the assembly and add 3.0 mL methanol directly into the cartridge. Attach cartridge to the assembly and bring labeled test tube in position.
- Slowly push methanol one drop at a time through the cartridge and collect the eluate in a labeled test tube.
- Dry eluate for each sample. Dry under nitrogen or air in a 40-45 C heat block or water bath and remove from the heat block or water bath when methanol is completely evaporated.
- Once the methanol is completely evaporated, reconstitute the dried eluate with 5 mL of Zero Control Standard (ZCS) and vortex extensively.
- Label test tubes and scintillation vials. Let Charm II reagents reach room temperature.
- Add the white tablet to the empty test tube.
- Add 300 ± 100 lL water. Mix 10 s to break up the tablet. Take additional time if required to be sure the tablet is broken up.
- Add 5 ± 0.25 mL diluted sample or control. Use a new tip for each sample. Immediately mix by swirling sample up and down 10 times for 10 s.
- Incubate at 65 ± 2 C for 2 min.
- Add green tablet (< 0.19kBq C 14 labeled erythromycin). Immediately mix by swirling the sample up and down 10 times for 15 s. The tablet addition and mixing of all samples should be completed within 40 s.
- Incubate at 65 ± 2 C for 2 min.
- Immediately pour off liquid completely. While draining, remove fat ring and wipe dry with swabs. Do not disturb the pellet.
- Add 300 ± 100 lL water. Mix thoroughly to break up the pellet. The pellet must be suspended in water before adding scintillation fluid.
- Add 3.0 ± 0.5 mL of scintillation fluid. Cap and invert (or shake) until mixture has a uniform cloudy appearance.
- Count in liquid scintillation counter for 60 s. Read cpm (counts per minute) on [14C] channel. Count within 10 min of adding of scintillation fluid.
- Calculate the Control Point by taking the highest negative control CPM À35%.
- Recount if greater than and within 50 cpm of the Control Point. Interpretation of results
- The cpm for the positive control sample should be below the Control Point, otherwise the run is not valid.
- If the sample cpm is greater than the Control Point, the sample is negative. Report as "Not Found". If the sample cpm is less than or equal to the Control Point, the sample is positive. The presence of macrolides/lincosamides could be confirmed by a confirmatory method (LC-MS/MS).
- References Administration, U. S. F. & D. (2017). Title 21 of the U.S. Code of Federal Regulations Part 556, Subpart B. Specific tolerances for residues of new animal drugs. Section 556.360 Lincomycin; Section 556.500 Oxytetracycline; Section 556.740 Tylosin. http:// www.ecfr.gov/cgi-bin/text-idx?SID=635d19511f68344e66597 151f2534107&mc=true&node=pt21.6.556&rgn=div5#sp21.6.
- Ahmed, M. (2013). The relationship between bioactive com- pounds with diastase activity and antibacterial synergy of honey and potato starch combinations against Klebsiella pneumonia. Clinical Microbiology: Open Access, 2(3), 2-5. doi: 10.4172/2327-5073.1000131
- Alfredsson, G., Branzell, C., Granelli, K., & Lundstr€ om, Å. (2005). Simple and rapid screening and confirmation of tet- racyclines in honey and egg by a dipstick test and LC-MS/ MS. Analytica Chimica Acta, 529(1-2), 47-51. doi:10.1016/j. aca.2004.08.050
- Almeida-Muradian, L. B., & Gallmann, P. (2012). Generalizability of PLS calibrations with FT-IR ATR spec- trometry for the prediction of some physicochemical meas- urands of honey. ALP Science, 541, 1-20.
- Almeida-Muradian, L. B., Luginb€ uhl, W., Badertscher, R., & Gallmann, P. (2012). Generalizability of PLS calibrations with FT-IR ATR spectrometry for the prediction of some physicochemical measurands of honey. ALP Science, 441, 1-20. Almeida-Muradian, L. B., & Penteado, M. V. (2015
- Almeida-Muradian, L. B., Sousa, R. J., Barth, O. M., & Gallmann, P. (2014). Preliminary data on brazilian monoflo- ral honey from the northeast region using ft-ir atr spectro- scopic, palynological, and color analysis. Quimica Nova, 37(4), 716-719. 10.5935/0100-4042.20140115
- Almeida-Muradian, L. B., Stramm, K. M., & Estevinho, L. M. (2014). Efficiency of the FT-IR ATR spectrometry for the prediction of the physicochemical characteristics of Melipona subnitida honey and study of the temperature's effect on those properties. International Journal of Food Science & Technology, 49(1), 188-195. doi:10.1111/ijfs.12297
- Almeida-Muradian, L. B., Stramm, K. M., Horita, A., Barth, O. M., Freitas, A. S., & Estevinho, L. M. (2013). Comparative study of the physicochemical and palynological characteristics of honey from Melipona subnitida and Apis mellifera. International Journal of Food Science & Technology, 48(8), 1698-1706. doi:10.1111/ijfs.12140
- Almeida-Silva, M., Canha, N., Galinha, C., Dung, H. M., Freitas, M. C., & Sitoe, T. (2011). Trace elements in wild and orchard honeys. Applied Radiation and Isotopes, 69(11), 1592-1595. doi:10.1016/j.apradiso.2011.01.013
- Alqarni, A. S., Owayss, A. A., Mahmoud, A. A., & Hannan, M. A. (2014). Mineral content and physical properties of local and imported honeys in Saudi Arabia. Journal of Saudi Chemical Society, 18(5), 618-625. doi:10.1016/j.jscs.2012.11.009
- Amendola, G., Pelosi, P., & Dommarco, R. (2010). Solid-phase extraction for multi-residue analysis of pesticides in honey. Journal of Environmental Science and Health, Part B, 46(1), 24-34. doi:10.1080/03601234.2010.515170
- Anjos, O., Campos, M. G., Ruiz, P. C., & Antunes, P. (2015). Application of FTIR-ATR spectroscopy to the quantification of sugar in honey. Food Chemistry, 169, 218-223. doi:10. 1016/j.foodchem.2014.07.138
- Anklam, E. (1998). A review of the analytical methods to determine the geographical and botanical origin of honey. Food Chemistry, 63(4), 549-562.(98)00057-0 doi:10.1016/ S0308-8146(98)00057-0
- Anonymous. (2007a). CRLs view on state of the art analytical methods for national residue control plans. CRL Guidance Paper of 7th December. https://ec.europa.eu/food/sites/food/files/safety/docs/ cs_vet-med-residues_guideline_validation_screening_en.pdf Anonymous. (2007b). Note of the Commission dated 24 July 2007 to the members and observers of the Veterinary Pharmaceutical Committee (GG). In Summary record of the Standing Committee on the Food Chain and Animal Health held on 18 September in Brussels. https://ec.europa.eu/food/sites/food/ files/safety/docs/reg-com_biosec_sum_18092007_en.pdf Anonymous. (2010). Guidelines for the validation of screening meth- ods for residues of veterinary medicines (initial validation and trans- fer). https://ec.europa.eu/food/sites/food/files/safety/docs/cs_ vet-med-residues_guideline_validation_screening_en.pdf Anonymous. (2017). Table 2 Substances or Group of substances (1) to be monitored for in the relevant commodity. E ¼ "essential" HD ¼ "highly desirable". https://ec.europa.eu/food/sites/food/files/ safety/docs/cs_vet-med-residues_animal-imports-non-eu_resi- due-monitoring-progs_required-table2.pdf AOAC (Association of Official Agricultural Chemists). (1990). AOAC official methods of analysis (15th ed., Vol. 1, pp. 136-138). AOAC. (1992). AOAC 969.38B, MAFF validated method V21 for moisture in honey. Journal of the Association of Public Analysts, 28, 183-187.
- Aronne, G., & DE Micco, V. (2010). Traditional melissopaly- nology integrated by multivariate analysis and sampling methods to improve botanical and geographical character- isation of honeys. Plant Biosystems -an International Journal Dealing with All Aspects of Plant Biology, 144(4), 833-840. doi: 10.1080/11263504.2010.514125
- Azzouz, A., & Ballesteros, E. (2015). Multiresidue method for the determination of pharmacologically active substances in egg and honey using a continuous solid-phase extraction system and gas chromatography-mass spectrometry. Food Chemistry, 178, 63-69. doi:10.1016/j.foodchem.2015.01.044
- Barga nska, Z., & Namie snik, J. (2010). Pesticide analysis of bee and bee product samples. Critical Reviews in Analytical Chemistry, 40(3), 159-171. doi:10.1080/10408347.2010.
- Barga nska, Z., Namie snik, J., & Slebioda, M. (2011). Determination of antibiotic residues in honey. TrAC Trends in Analytical Chemistry, 30(7), 1035-1041. doi:10.1016/j.trac. 2011.02.014
- Barth, O. M. (1989). O p olen no mel brasileiro. Online. http://scholar. google.com/scholar?hl=en&btnG=Search&q=intitle:O+P olenþ no+Mel+Brasileiro#0
- Barth, O. M. (1971). Mikroskopische Bestandteile brasilia- nischer Honigtau-Honigen. Apidologie, 2(2), 157-167. doi:10. 1051/apido:19710202
- Barth, O. M., Freitas, A. S., Sousa, G. L., & Almeida-Muradian, L. B. (2013). Pollen and physicochemical analysis of Apis and Tetragonisca (Apidae) honey. Interciencia, 38(4), 280-285. http://www.redalyc.org/html/339/33926985012/
- Behm, F., von der Ohe, K., & Henrich, W. (1996). Zuverl€ assigkeit der Pollenanalyse von Honig. Deutsche Lebensmittel-Rundschau, 192, 183-188.
- Benetti, C., Dainese, N., Biancotto, G., Piro, R., & Mutinelli, F. (2004). Unauthorised antibiotic treatments in beekeeping: Development and validation of a method to quantify and con- firm tylosin residues in honey using liquid chromatography- tandem mass spectrometric detection. Analytica Chimica Acta, 520(1-2), 87-92. doi:10.1016/j.aca.2004.04.070
- Benetti, C., Piro, R., Binato, G., Angeletti, R., & Biancotto, G. (2006). Simultaneous determination of lincomycin and five macrolide antibiotic residues in honey by liquid chromatog- raphy coupled to electrospray ionization mass spectrom- etry (LC-MS/MS). Food Additives and Contaminants, 23(11), 1099-1108. doi:10.1080/02652030600699338
- Biland zi c, N., Tlak Gajger, I., Kosanovi c, M., Calopek, B., Sedak, M., Solomun Kolanovi c, B., Varenina, I., Luburi c, - D. B., Varga, I., & - Doki c, M. (2017). Essential and toxic element concentrations in monofloral honeys from south- ern Croatia. Food Chemistry, 234, 245-253. doi:10.1016/j. foodchem.2017.04.180
- Blasco, C., Fern andez, M., Pic o, Y., & Font, G. (2004). Comparison of solid-phase microextraction and stir bar sorptive extraction for determining six organophosphorus insecticides in honey by liquid chromatography-mass spec- trometry. Journal of Chromatography A, 1030(1-2), 77-85. doi:10.1016/j.chroma.2003.11.037
- Blasco, C., Lino, C. M., Pic o, Y., Pena, A., Font, G., & Silveira, M. I. N. (2004). Determination of organochlorine pesticide residues in honey from the central zone of Portugal and the Valencian community of Spain. Journal of Chromatography A, 1049(1-2), 155-160. doi:10.1016/j.chroma.2004.07.049
- Blasco, C., Pic o, Y., & Torres, C. M. (2007). Progress in ana- lysis of residual antibacterials in food. TrAC Trends in Analytical Chemistry, 26(9), 895-913. doi:10.1016/j.trac.2007. 08.001
- Blasco, C., Vazquez-Roig, P., Onghena, M., Masia, A., & Pic o, Y. (2011). Analysis of insecticides in honey by liquid chro- matography-ion trap-mass spectrometry: Comparison of different extraction procedures. Journal of Chromatography A, 1218(30), 4892-4901. doi:10.1016/j.chroma.2011.02.045
- Bogdanov, S. (2009). Harmonised methods of the international honey commission. International Honey Commission. Retrieved from http://www.ihc-platform.net/ihcme- thods2009.pdf Bogdanov, S. (2011). The honey book. http://www.bee-hexa- gon.net/honey/ Bogdanov, S., & Martin, P. (2002). Honey authenticity: A review. Mitteilungen Aus Dem Gebiete Der Lebensmitteluntersuchung Und Hygiene, 6, 1-20. http://www.bee-hexagon.net/files/file/ fileE/Honey/AuthenticityRevue_Internet.pdf
- Bogdanov, S., Haldimann, M., Luginb€ uhl, W., & Gallmann, P. (2007). Minerals in honey: Environmental, geographical and botanical aspects. Journal of Apicultural Research, 46(4), 269-275. doi:10.1080/00218839.2007.11101407
- Bogdanov, S., Martin, P., & L€ ullmann, C. (1997). Harmonized methods of the European Honey Commission. Apidologie Extra Issue, 1-59.
- Bougrini, M., Florea, A., Cristea, C., Sandulescu, R., Vocanson, F., Errachid, A., Bouchikhi, B., El Bari, N., & Jaffrezic-Renault, N. (2016). Development of a novel sensitive molecularly imprinted polymer sensor based on electropolymerization of a microporous-metal-organic framework for tetracycline detec- tion in honey. Food Control, 59, 424-429. https://doi.org/ https://doi.org/10.1016/j.foodcont.2015.06.002 doi:10.1016/j. foodcont.2015.06.002
- Bryant, V. M., & Jones, G. D. (2001). The R-values of honey: Pollen coefficients. Palynology, 25(1), 11-28. doi:10.1080/ 01916122.2001.9989554
- Caldow, M., Stead, S. L., Day, J., Sharman, M., Situ, C., & Elliott, C. (2005). Development and validation of an optical SPR biosensor assay for tylosin residues in honey. Journal of Agricultural and Food Chemistry, 53(19), 7367-7370. doi:10. 1021/jf050725s
- Cano, C. B., Felsner, M. L., Bruns, R. E., Matos, J. R., & Almeida-Muradian, L. B. (2006). Optimization of mobile phase for separation of carbohydrates in honey by high per- formance liquid chromatography using a mixture design. Journal of the Brazilian Chemical Society, 17(3), 588-593. doi: 10.1590/S0103-50532006000300024
- Carrasco-Pancorbo, A., Casado-Terrones, S., Segura- Carretero, A., & Fern andez-Guti errez, A. (2008). Reversed- phase high-performance liquid chromatography coupled to ultraviolet and electrospray time-of-flight mass spectrom- etry on-line detection for the separation of eight tetracy- clines in honey samples. Journal of Chromatography A, 1195(1-2), 107-116. doi:10.1016/j.chroma.2008.05.003
- Carreck, N. L., Andree, M., Brent, C. S., Cox-Foster, D., Dade, H. A., Ellis, J. D., Hatjina, F., & vanEngelsdorp, D. (2013). Standard methods for Apis mellifera anatomy and dissection. Journal of Apicultural Research, 52(4), 1-39.
- Chabottaux, V., Bonhomme, C., Muriano, A., Stead, S., Diserens, J. M., Marco, M. P., & Granier, B. (2010). Effect of acidic hydrolysis on sulfamides detection in honey with new generic antibody-based dipstick assay. In Abstract book of the 6th International Symposium on Hormone and Veterinary Drug Residue Analysis (Vol. 63, pp. 1-4). http:// www.conffidence.eu/wp-content/uploads/2014/08/enews_2_
- VDRA_abstract_CHABOTTAUX_SULFASENSOR.pdf
- Chua, L. S., Lee, J. Y., & Chan, G. F. (2013). Honey protein extraction and determination by mass spectrometry. Analytical and Bioanalytical Chemistry, 405(10), 3063-3074. doi:10.1007/s00216-012-6630-2
- Ciulu, M., Solinas, S., Floris, I., Panzanelli, A., Pilo, M. I., Piu, P. C., Spano, N., & Sanna, G. (2011). RP-HPLC determin- ation of water-soluble vitamins in honey. Talanta, 83(3), 924-929. doi:10.1016/j.talanta.2010.10.059
- Codex. (2001). Codex Alimentarius standard for honey 12- 1981. Revised Codex standard for honey. Standards and standard methods (Vol. 11). Retrieved April, 2020, from http://www.codexalimentarius.net
- Codex Alimentarius Commission. (1969). Recommended European regional standard for honey (CAC/RS 12-1969).
- Codex Standard for Honey. (2001). CODEX STAN 12-1981 (pp. 1-8).
- Commission, E. (1998). Commission Decision 98/179/EC of 23 February 1998 laying down detailed rules on official sampling for the monitoring of certain substances and residues thereof in live animals and animal products. Official Journal of the European Communities, L65, 31-34. http://eur-lex.europa.eu/legal-con- tent/EN/TXT/PDF/?uri=CELEX:31998D0179&from=EN
- Commission, E. (2005). Commission Decision 2005/34/EC of 11 January 2005 laying down harmonized standards for the testing for certain residues in products of animal origin imported from third countries. Official Journal of the European Union, L16, 61-63. http://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32005D0034&from=EN
- Commission, E. (2010). Commission Regulation (EU) No 37/ 2010 of 22 December 2009 on pharmacologically active sub- stances and their classification regarding maximum residue lim- its in foodstuffs of animal origin. Official Journal of the European Union, L15, 1-72. https://ec.europa.eu/health/sites/health/files/ files/eudralex/vol-5/reg_2010_37/reg_2010_37_en.pdf
- Commission, E. (2018). Commission Implementing Regulation (EU) 2018/2001/82/EC. Official Journal of the European Union, L79, 16-18. https://eur-lex.europa.eu/legal-con- tent/EN/TXT/?qid=1561736258606&uri=CELEX:32018R0470.
- Consonni, R., & Cagliani, L. R. (2008). Geographical character- ization of polyfloral and Acacia honeys by nuclear magnetic resonance and chemometrics. Journal of Agricultural and Food Chemistry, 56(16), 6873-6880. doi:10.1021/jf801332r
- Council Directive. (1996). Council Directive 96/23/EC of 29 April 1996 on measures to monitor certain substances and residues thereof in live animals and animal products and repealing Directives 85/358/EEC and 86/469/EEC and Decisions 89/187/ EEC and 91/664/EEC. Official Journal of the European Communities, L125, 10-32. http://eur-lex.europa.eu/legal-content/EN/TXT/ PDF/?uri=CELEX:31996L0023&from=EN
- Silva, P. M., Gauche, C., Gonzaga, L. V., Costa, A. C. O., & Fett, R. (2016). Honey: Chemical composition, stability and authenticity. Food Chemistry, 196, 309-323. doi:10.1016/j. foodchem.2015.09.051
- Daeseleire, E., & Reybroeck, W. (2012). Development and val- idation of a liquid chromatographic-tandem mass spectro- metric method for the detection of fumagillin in honey: Use in a stability study. In I International Symposium on Bee Products (pp. 9-12). Braganc ¸a, Portugal.
- Daniela, I., Morariu, P., Schiriac, E., Matiut, S., & Cuciureanu, R. (2012). Method validation for simultaneous determin- ation of 12 sulfonamides in honey using biochip array tech- nology. Farmacia, 60, 143-154. https://pdfs.semanticscholar. org/96c0/944ef59d8e1a03fc7c966532a528bb232c43.pdf
- Davies, A. M. C. (1975). Amino acid analysis of honeys from eleven countries. Journal of Apicultural Research, 14(1), 29-39. doi:10.1080/00218839.1975.11099798
- De Brabander, H. F., Noppe, H., Verheyden, K., Vanden Bussche, J., Wille, K., Okerman, L., Vanhaecke, L., Reybroeck, W., Ooghe, S., & Croubels, S. (2009). Residue analysis: Future trends from a historical perspective. Journal of Chromatography A, 1216(46), 7964-7976. doi:10.1016/j. chroma.2009.02.027
- de Graaf D., Alippi A., Ant unez K., Aronstein K., Budge G., De Koker D., De Smet L., Dingman D., Evans J., Foster L., F€ unfhaus A., Garcia-Gonzalez E., Gregore A., Human H., Murray K., Nguyen B., Poppinga L., Spivak M., van
- Engelsdorp D., Wilkins S. & Genersch E. (2013). Standard methods for American foulbrood research, Journal of Apicultural Research, 52(1), 1-28. https://doi.org/10.3896/ IBRA.1.52.1.11
- De-Melo, A. A. M., Almeida-Muradian, L. B., Sancho, M. T., & Pascual-Mat e, A. (2017). Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research, 57(1), 5-37. doi:10.1080/00218839.2017.1338444
- De-Melo, A. A. M., Almeida-Muradian, L. B., Sancho, M. T., & Pascual-Mat e, A. (2017). Composition and properties of Apis mellifera honey: A review. Journal of Apicultural Research, 8839(June), 1-33. doi:10.1080/00218839.2017.1338444
- Dietemann, V., Nazzi, F. J., Martin, S., L., Anderson, D., Locke, B., S., Delaplane, K., Wauquiez, Q., Tannahill, C., Frey, E., Ziegelmann, B., Rosenkranz, P., D., & Ellis, J. (2013). Standard methods for varroa research. In V. Dietemann, J. D. Ellis & P. Neumann (Eds), The COLOSS BEEBOOK, Volume II: standard methods for Apis mellifera pest and pathogen research. Journal of Apicultural Research, 52(1). doi:10.3896/ IBRA.1.52.1.09
- DOCUMENT SANTE/11813/2017. (2018). Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed European Commission. DOCUMENT SANTE/11945/2015. (2015). Guidance document on analytical quality control and method validation procedures for pesticides residues analysis in food and feed European Commission. Dominguez, M. A., Jacks en, J., Emmer, Å., & Centuri on, M. E. (2016). Capillary electrophoresis method for the simultan- eous determination of carbohydrates and proline in honey samples. Microchemical Journal, 129, 1-4. doi:10.1016/j. microc.2016.05.017
- Dubreil-Ch eneau, E., Pirotais, Y., Verdon, E., & Hurtaud- Pessel, D. (2014). Confirmation of 13 sulfonamides in honey by liquid chromatography-tandem mass spectrometry for monitoring plans: Validation according to European Union Decision 2002/657/EC. Journal of Chromatography A, 1339(37), 128-136. doi:10.1016/j.chroma.2014.03.003
- Edder, P., Cominoli, A., & Corvi, C. (1998). Dosage de r esidus de streptomycine dans le miel par HPLC avec postd erivati- sation et d etection fluorim etrique. Mitteilungen Aus Dem Gebiete Der Lebensmitteluntersuchung Und Hygiene, 89(3), 369-382. EL Alami EL Hassani, N., Tahri, K., Llobet, E., Bouchikhi, B., Errachid, A., Zine, N., & EL Bari, N. (2018). Emerging approach for analytical characterization and geographical classification of Moroccan and French honeys by means of a voltammetric electronic tongue. Food Chemistry, 243, 36-42. doi:10.1016/j.foodchem.2017.09.067
- EL Sohaimy, S. A., Masry, S. H. D., & Shehata, M. G. (2015). Physicochemical characteristics of honey from different ori- gins. Annals of Agricultural Sciences, 60(2), 279-287. doi:10. 1016/j.aoas.2015.10.015
- Elizabeta, D. S., Gordana, A., Zehra, H. M., Biljana, S. D., Risto, U., Aleksandra, T., & Goran, S. (2012). In-house validation and quality control of commercial enzyme-linked immunosorbnet assays for screening of nitrofuran metabolites in food of animal origin. Macedonian Veterinary Review, 35(1), 13-21. https://www. researchgate.net/profile/Risto_Uzunov/publication/260184219_
- Erdtman, G. (1952). Pollen morphology and plant taxonomy - Angiosperms. Almqvist&Wiksell.
- EU PESTICIDES DATABASE. http://ec.europa.eu/food/plant/pes- ticides/eu-pesticides-database/public/?event=product.resultat& language=EN&selectedID=375
- European Commission. (2001). Council Directive 2001/110/EC of 20 December 2001 relating to honey. Retrieved from http://www.ihc-platform.net/honeydirective2001.pdf European Communities Commission. (1997). Commission Decision 97/747/EC of 27 October 1997 fixing the levels and frequencies of sampling provided for by Council Directive 96/ 23/EC for the monitoring of certain substances and residues thereof in certain animal products. Official Journal of the European Communities, L303, 12-15. http://eur-lex.europa.eu/legal-con- tent/EN/TXT/PDF/?uri=CELEX:31997D0747&from=EN
- European Communities Commission. (2003). Commission Decision 2003/181/EC of 13 March 2003 as regards the set- ting of minimum required performance limits (MRPLs) for certain residues in food of animal origin. Official Journal of the European Union, L71, 17-18. http://eur-lex.europa.eu/legal- content/EN/TXT/PDF/?uri=CELEX:32003D0181&from=EN
- European Union Commission. (2002). Commission Decision 2002/657/EC of 12 August 2002 implementing Council Directive 96/23/EC concerning the performance of analytical methods and the interpretation of results. Official Journal of the European Communities, L221, 8-36. http://eur-lex.europa. eu/legal-content/EN/TXT/PDF/?uri=CELEX:32002D0657&
- from=EN Eyer, M., Greco, M. K., Lang, J., Neumann, P., & Dietemann, V. (2016). No spatial patterns for early nectar storage in honey bee colonies. Insectes Sociaux, 63(1), 51-59. doi:10. 1007/s00040-015-0432-4
- Eyer, M., Neumann, P., & Dietemann, V. (2016). A look into the cell: Honey storage in honey bees, Apis mellifera. PLoS One, 11(8), e0161059-20. doi:10.1371/journal.pone.0161059
- Fallico, B., Arena, E., & Zappala, M. (2009). Prediction of honey shelf life. Journal of Food Quality, 32(3), 352-368. doi: 10.1111/j.1745-4557.2009.00253.x
- Ferreira, I. C. F. R., Aires, E., Barreira, J. C. M., & Estevinho, L. M. (2009). Antioxidant activity of Portuguese honey sam- ples: Different contributions of the entire honey and phen- olic extrac. Food Chemistry, 114(4), 1438-1443. doi:10.1016/ j.foodchem.2008.11.028
- Fischer, W. M., & Palmer, J. D. (2005). Evidence from small- subunit ribosomal RNA sequences for a fungal origin of Microsporidia. Molecular Phylogenetics and Evolution, 36(3), 606-622. doi:10.1016/j.ympev.2005.03.031
- Forsgren, E., Budge, G., Charri ere, J.D., & Hornitzky, M. (2013). Standard methods for European foulbrood research, Journal of Apicultural Research, 52(1), 1-14. https://doi.org/10. 3896/IBRA.1.52.1.12
- Fries, I., Chauzat, M.P., Chen, Y.P., Doublet, V., Genersch, E., Gisder, S., Higes, M., McMahon, D., Mart ın-Hern andez, R., Natsopoulou, M., Paxton, R., Tanner, G., Webster, T., & Williams G. (2013). Standard methods for Nosema research, Journal of Apicultural Research, 52(1), 1-28, https:// doi.org/10.3896/IBRA.1.52.1.14I
- Galarini, R., Saluti, G., Giusepponi, D., Rossi, R., & Moretti, S. (2015). Multiclass determination of 27 antibiotics in honey. Food Control, 48, 12-24. doi:10.1016/j.foodcont.2014.03.048
- Gaudin, V., DE Courville, A., Hedou, C., Rault, A., Diomand e, S. E., Creff-Froger, C., & Verdon, E. (2013). Evaluation and validation of two microbiological tests for screening anti- biotic residues in honey according to the European guide- line for the validation of screening methods. Food Additives & Contaminants: Part A, 30(2), 234-243. doi:10.1080/ 19440049.2012.738367
- Gaudin, V., Hedou, C., & Verdon, E. (2013). Validation of two ELISA kits for the screening of tylosin and streptomycin in honey according to the European decision 2002/657/EC. Food Additives & Contaminants: Part A, 30(1), 93-109. doi:10. 1080/19440049.2012.722696
- Gaudin, V., Hedou, C., Soumet, C., & Verdon, E. (2014). Evaluation and validation of biochip multi-array technology for the screening of six families of antibiotics in honey according to the European guideline for the validation of screening methods for residues of veterinary medicines. Food Additives & Contaminants: Part A, 31(10), 1699-1711. doi:10.1080/19440049.2014.952784
- Gaudin, V., Rault, A., & Verdon, E. (2012). Validation of a commercial receptor kit SulfasensorV R Honey for the screening of sulfonamides in honey according to Commission Decision 2002/657/EC. Food Additives & Contaminants: Part A, 29(6), 942-950. doi:10.1080/19440049. 2012.668718
- Gaudin, V., Rault, A., & Verdon, E. (2013). Validation of a commercial receptor kit for tetracycline residues in honey according to the European guideline for screening methods. Food and Agricultural Immunology, 24(1), 111-128. doi:10. 1080/09540105.2011.651446
- Gomes, S., Dias, L. G., Moreira, L. L., Rodrigues, P., & Estevinho, L. (2010). Physicochemical, microbiological and antimicrobial properties of commercial honeys from Portugal. Food and Chemical Toxicology, 48(2), 544-548. doi: 10.1016/j.fct.2009.11.029 G omez-D ıaz, D., Navaza, J. M., & Quint ans-Riveiro, L. C. (2012). Physicochemical characterization of Galician honeys. International Journal of Food Properties, 15(2), 292-300. doi: 10.1080/10942912.2010.483616
- Gonnet, M., & Vache, G. (1979'analyse sensorielle. In 27th Apimondia International Apicultural Congress (pp. 499-506). Ath enes.
- Gonnet, M., & Vache, G. (1992). The taste of honey. Apimondia. Gonnet, M., Vache, G., & Jean-Prost, P. (1985). Le goût du miel. UNAF. Gordon, L. (1989). Quantitative determination of oxytetracyc- line in honey by cylinder plate microbioassay. Australian Journal of Agricultural Research, 40(4), 933-940. doi:10.1071/ AR9890933
- Granato, D., & Nunes, D. S. (2016). An alises qu ımicas, proprie- dades funcionais e controle de qualidade de alimentos e bebi- das: uma abordagem te orico-pr atica. Elsevier Brasil.
- Greco, M. K., Lang, J., Gallmann, P., Priest, N., Feil, E., & Crailsheim, K. (2013). Sugar concentration influences deci- sion making in Apis mellifera L. workers during early-stage honey storage behaviour. Open Journal of Animal Sciences, 3(3), 210-218. doi:10.4236/ojas.2013.33031
- Haidamus, S.L., Lorenzon, M.C.A., & Barth, O.M. (2019). Biological elements and residues in Brazilian honeys. Greener Journal of Biological Sciences, 9(1), 8-14. https://doi.org/10. 15580/GJBS2019.1.022119038.
- Hammel, Y. A., Mohamed, R., Gremaud, E., Lebreton, M. H., & Guy, P. A. (2008). Multi-screening approach to monitor and quantify 42 antibiotic residues in honey by liquid chromatog- raphy-tandem mass spectrometry. Journal of Chromatography A, 1177(1), 58-76. http://re.indiaenvironmentportal.org.in/ files/Multi screening approach to monitor.pdf
- Hawkins, J., de Vere, N., Griffith, A., Ford, C. R., Allainguillaume, J., Hegarty, M. J., Baillie, L., & Adams- Groom, B. (2015). Using DNA metabarcoding to identify the floral composition of honey: A new tool for investigat- ing honey bee foraging preferences. PLoS One, 10(8), e0134735-20. doi:10.1371/journal.pone.0134735
- Heering, W., Usleber, E., Dietrich, R., & M€ artlbauer, E. (1998). Immunochemical screening for antimicrobial drug residues in commercial honey. The Analyst, 123(12), 2759-2762. doi: 10.1039/a805047c
- Heinrich, K., Macarthur, R., VON Holst, C., & Sharman, M. (2013). An inter-laboratory validation of a multiplex dipstick assay for four classes of antibiotics in honey Rapid Detection in Food and Feed. Analytical and Bioanalytical Chemistry, 405(24), 7875-7884. doi:10.1007/s00216-013- 7070-3 Hermos ın, I., Chic on, R. M., &., & Dolores Cabezudo, M. (2003). Free amino acid composition and botanical origin of honey. Food Chemistry, 83(2), 263-268. doi:10.1016/S0308- 8146(03)00089-X Huidobro, J. F., & Simal, J. (1984). Contribution to the sugars determination on honey. Anales de Bromatolog ıa, 36, 247-264.
- Human, H., Brodschneider, R., Dietemann, V., Dively, G., Ellis, J. D., Forsgren, E., Fries, I., Hatjina, F., Hu, F.-L., Jaff e, R., Jensen, A. B., K€ ohler, A., Magyar, J. P., € Ozk yr ym, A., Pirk, C. W. W., Rose, R., Strauss, U., Tanner, G., Tarpy, D. R., … Zheng, H.-Q. (2013). Miscellaneous standard methods for Apis mellifera research. In V. Dietemann, J. D. Ellis, & P. jaoac/2011/00000094/00000003/art00023 doi:10.1093/jaoac/
- Kaufmann, A., Roth, S., Ryser, B., Widmer, M., & Guggisberg, D. (2002). Quantitative LC/MS-MS determination of sulfonamides and some other antibiotics in honey. Journal of AOAC International, 85(4), 853-860. http://www.ingentaconnect.com/ contentone/aoac/jaoac/2002/00000085/00000004/art00009?- crawler=true&mimetype=application/pdf&casa_token=cI5pU DQmtlQAAAAA:A3SyqI7aIZndvjCZA0bR2IuaZyBleUKUQ- U1YQT5p8t6vqxxk30JLPlxd2xbeYzIwMQb9-lQl
- Khismatoullin, R. G., Lyapunov, Y. E., Kuzyaev, R. Z., Yelovikova, E. A., Legotkina, G. I., & Zakharov, A. V. (2004). Bacteriological detection of tylosin residues in honey [Paper presentation]. Proceedings of the First European Conference of Apidology (pp. 19-23).
- Khismatoullin, R., Kuzyaev, R., Lyapunov, Y., & Elovikova, E. (2003). Modification of microbiological detection method of tetracycline in honey. Apiacta, 38, 246-248. https://www. apimondia.com/apiacta/articles/2003/khismatoullin_1.pdf
- Khong, S. P., Gremaud, E., Richoz, J., Delatour, T., Guy, P. A., Stadler, R. H., & Mottier, P. (2004). Analysis of matrix- bound nitrofuran residues in worldwide-originated honeys by isotope dilution high-performance liquid chromatog- raphy-tandem mass spectrometry. Journal of Agricultural and Food Chemistry, 52(17), 5309-5315. doi:10.1021/jf0401118
- Kivrak, _ I., Kivrak, S ¸., & Harmandar, M. (2016). Development of a rapid method for the determination of antibiotic resi- dues in honey using UPLC-ESI-MS/MS. Food Science and Technology, 36(1), 90-96. doi:10.1590/1678-457X.0037
- Kujawski, M. W., Barga nska, Z., Marciniak, K., Miedzianowska, E., Kujawski, J. K., Slebioda, M., & Namie snik, J. (2014). Determining pesticide contamination in honey by LC-ESI- MS/MS -Comparison of pesticide recoveries of two liquid- liquid extraction based approaches. LWT -Food Science and Technology, 56(2), 517-523. doi:10.1016/j.lwt.2013.11.024
- Kujawski, M. W., Pinteaux, E., & Namie snik, J. (2012). Application of dispersive liquid-liquid microextraction for the determination of selected organochlorine pesticides in honey by gas chromatography-mass spectrometry. European Food Research and Technology, 234(2), 223-230. doi:10. 1007/s00217-011-1635-1
- Lazarevic, J. S., Palic, R. M., Radulovic, N. S., Ristic, N. R., & Stojanovic, G. S. (2010). Chemical composition and screen- ing of the antimicrobial and antioxidative activity of extracts of Stachys species. Journal of the Serbian Chemical Society, 75, 1347-1359. doi:10.2298/JSC100601117L
- Lee, D.-C., Lee, S.-Y., Cha, S.-H., Choi, Y.-S., & Rhee, H.-I. (1998). Discrimination of native bee-honey and foreign bee- honey by SDS-PAGE. Korean Journal of Food Science and Technology, 30(1), 1-5.
- Le on-Ruiz, V., Vera, S., Gonz alez-Porto, A. V., & San Andr es, M. P. (2013). Analysis of water-soluble vitamins in honey by isocratic RP-HPLC. Food Analytical Methods, 6(2), 488-496. doi:10.1007/s12161-012-9477-4
- Lopez, M. I., Feldlaufer, M., Williams, A., & Chu, P.-S. (2007). Determination and confirmation of nitrofuran residues in honey using LC-MS / MS. Journal of Agricultural and Food Chemistry, 55(4), 1103-1108. doi:10.1021/jf0625712
- Lopez, M. I., Pettis, J. S., Smith, I. B., & Chu, P.-S. (2008). Multiclass determination and confirmation of antibiotic resi- dues in honey using LC-MS/MS. Journal of Agricultural and Food Chemistry, 56(5), 1553-1559. doi:10.1021/jf073236w
- Lores, E. M., Moore, J. C., & Moody, P. (1987). Improved silica gel cleanup method for organophosphorus pesticides. Chemosphere, 16(5), 1065-1069. doi:10.1016/0045-6535(87)90043-9
- Louppis, A. P., Karabagias, I. K., Kontakos, S., Kontominas, M. G., & Papastephanou, C. (2017). Botanical discrimination of Greek unifloral honeys based on mineral content in com- bination with physicochemical parameter analysis, using a validated chemometric approach. Microchemical Journal, 135, 180-189. doi:10.1016/j.microc.2017.09.004
- Louveaux, J., Maurizio, A., & Vorwohl, G. (1970a). Internationale Kommission F€ ur Bienenbotanik Der I. U. B. S. Methodik Der Melissopalynologie. Apidologie, 1(2), 193-209. doi:10.1051/apido:19700205
- Louveaux, J., Maurizio, A., & Vorwohl, G. (1970b). Methods of melissopalynology. Bee World, 51(3), 125-138. doi:10.1080/ 0005772X.1970.11097312
- Louveaux, J., Maurizio, A., & Vorwohl, G. (1978). Methods of melissopalynology. Bee World, 59(4), 139-157. doi:10.1080/ 0005772X.1978.11097714
- Lutier, P. M., & Vaissi ere, B. E. (1993). An improved method for pollen analysis of honey. Review of Palaeobotany and Palynology, 78(1-2), 129-144.(93)90019-Q doi:10.1016/ 0034-6667(93)90019-Q Marcazzan, G. L., Magli, M., Piana, L., Savino, A., & Stefano, M. A. (2014). Sensory profile research on the main Italian typologies of monofloral honey: Possible developments and applications. Journal of Apicultural Research, 53(4), 426-437. doi:10.3896/IBRA.1.53.4.09
- Marcazzan, G. L., Mucignat-Caretta, C., Marchese, C. M., & Piana, M. L. (2018). A review of methods for honey sensory analysis. Journal of Apicultural Research, 57(1), 75-87. doi:10. 1080/00218839.2017.1357940
- Martel, A. C., & Zeggane, S. (2002). Determination of acari- cides in honey by high-performance liquid chromatography with photodiode array detection. Journal of Chromatography A, 954(1-2), 173-180.(02)00126-7 doi:10.1016/S0021- 9673(02)00126-7
- Maudens, K. E., Zhang, G. F., & Lambert, W. E. (2004). Quantitative analysis of twelve sulfonamides in honey after acidic hydrolysis by high-performance liquid chromatog- raphy with post-column derivatization and fluorescence detection. Journal of Chromatography A, 1047(1), 85-92. doi: 10.1016/j.chroma.2004.07.007
- Maurizio, A. (1959). Zur Frage der Mikroskopie von Honigtau- Honigen. Annales de L'abeille, 2, 145-157. doi:10.1051/ apido:19590203
- Maurizio, A. (1977). Honig-Mikroskopie.
- In H. Freud (Ed.), Handbuch der Mikroskopie in der Technik (vol. VIII, pp. 627-652). Umschau Verlag.
- McAleer, D., Mcconnell, R. I., Tohill, A., & Fitzgerald, S. P. (2010). Biochip arrays for multi-analytical screening of anti- biotics in honey [Paper presentation]. Abstract Book of the 6th International Symposium on Hormone and Veterinary Drug Residue Analysis (Vol. 129, pp. 1-4). Ghent.
- McMullen, S. E., Lansden, J. A., & Schenck, F. J. (2004). Modifications and adaptations of the Charm II rapid antibody assay for chloramphenicol in honey. Journal of Food Protection, 67(7), 1533-1536. doi:10.4315/0362-028X-67.7.1533
- Medrzycki, P., Giffard, H., Aupinel, P., Belzunces, L. P., Chauzat, M.-P., Claßen, C., Colin, M. E., Dupont, T., Girolami, V., Johnson, R., Le Conte, Y., L€ uckmann, J., Marzaro, M., Pistorius, J., Porrini, C., Schur, A., Sgolastra, F., Delso, N. S., van der Steen, J. J. M., … Vidau, C. (2013). Standard methods for toxicology research in Apis mellifera. In V. Dietemann, J. D. Ellis, & P. Neumann (Eds), The COLOSS BEEBOOK, Volume I: standard methods for Apis mellifera research. Journal of Apicultural Research, 52(4), 1-60. doi:10. 3896/IBRA.1.52.4.14
- Meixner, M.D., Pinto, M.A., Bouga, M., Kryger, P., Ivanova E., & Stefan Fuchs, S. (2013). Standard methods for character- ising subspecies and ecotypes of Apis mellifera. Journal of Apicultural Research, 52(4), 1-27.
- Miller, N. J., Rice-Evans, C., Davies, M. J., Gopinathan, V., & Milner, A. (1993). A novel method for measuring antioxi- dant capacity and its application to monitoring the antioxidant status in premature neonates. Clinical Science, 84(4), 407-412. doi:10.1042/cs0840407
- MINIST ERIO DA AGRICULTURA PECU ARIA E ABASTECIMENTO, B (2000). Instruc ¸ão Normativa n 11, de
- de outubro 2000. Mucignat-Caretta, C., Marcazzan, G. L., & Piana, M. L. (2012). Il Miele. In Atlante sensoriale dei prodotti alimentari (pp. 286-295). Techniche Nuove.
- Muriano, A., Chabottaux, V., Diserens, J. M., Granier, B., Sanchez-Baeza, F., & Marco, M. P. (2015). Rapid immuno- chemical analysis of the sulfonamide-sugar conjugated fraction of antibiotic contaminated honey samples. Food Chemistry, 178, 156-163. doi:10.1016/j.foodchem.2015.01.037
- Muriano, A., Pinacho, D.-G., Chabottaux, V., Diserens, J.-M., Granier, B., Stead, S., Sanchez Baeza, F., Pividori, M. I., & Marco, M.-P. (2013). A portable electrochemical magneto- immunosensor for detection of sulfonamide antimicrobials in honey Rapid Detection in Food and Feed. Analytical and Bioanalytical Chemistry, 405(24), 7885-7895. doi:10.1007/ s00216-013-7219-0
- Nascimento, K. S. D., Gasparotto Sattler, J. A., Lauer Macedo, L. F., Serna Gonz alez, C. V., Pereira de Melo, I. L., da Silva Ara ujo, E., Granato, D., Sattler, A., & de Almeida-Muradian, L. B. (2018, January). Phenolic compounds, antioxidant cap- acity and physicochemical properties of Brazilian Apis melli- fera honeys. LWT, 91, 85-94. doi:10.1016/j.lwt.2018.01.016
- Nozal, M. J., Bernal, J. L., G omez, M. T., Jim enez, J. J., Bernal, J., & Higes, M. (2006). Trace analysis of antibacterial tylosin A, B, C and D in honey by liquid chromatography-electro- spray ionization-mass spectrometry. Journal of Separation Science, 29(3), 405-413. 10.1002/jssc.200500423
- O'Mahony, J., Moloney, M., Mcconnell, I., Benchikh, E., Lowry, P., & Danaher, M. (2010). Biochip array detection of nitro- furan metabolites in honey [Paper presentation]. Abstract Book of the 6th International Symposium on Hormone and Veterinary Drug Residue Analysis (Vol. 176, pp. 1-4). Ghent.
- Ouchemoukh, S., Louaileche, H., & Schweitzer, P. (2007). Physicochemical characteristics and pollen spectrum of some Algerian honeys. Food Control, 18(1), 52-58. doi:10. 1016/j.foodcont.2005.08.007
- Ouchemoukh, S., Schweitzer, P., Bachir Bey, M., Djoudad- Kadji, H., & Louaileche, H. (2010). HPLC sugar profiles of Algerian honeys. Food Chemistry, 121(2), 561-568. doi:10. 1016/j.foodchem.2009.12.047
- Ough, C. (1969). Rapid determination of proline in grapes and wines. Journal of Food Science, 34(3), 228-230. doi:10.1111/j. 1365-2621.1969.tb10327.x € Ozbalci, B., Boyaci, I. H., Topcu, A., Kadilar, C., & Tamer, U. (2013). Rapid analysis of sugars in honey by processing Raman spectrum using chemometric methods and artificial neural networks. Food Chemistry, 136(3-4), 1444-1452. doi: 10.1016/j.foodchem.2012.09.064
- Pang, G.-F., Fan, C.-L., Liu, Y.-M., Cao, Y.-Z., Zhang, J.-J., Fu, B.-L., Li, X.-M., Li, Z.-Y., & Wu, Y.-P. (2006). Multi-residue method for the determination of 450 pesticide residues in honey, fruit juice and wine by double-cartridge solid-phase extraction/ gas chromatography-mass spectrometry and liquid chromatography-tandem mass spectrometry. Food Additives and Contaminants, 23(8), 777-810. doi:10.1080/ 02652030600657997
- Pascual-Mat e, A., Os es, S. M., Fern andez-Muiño, M. A., & Sancho, M. T. (2018). Methods of analysis of honey. Journal of Apicultural Research, 57(1), 38-74. doi:10.1080/00218839. 2017.1411178
- Peng, D., Ye, S., Wang, Y., Chen, D., Tao, Y., Huang, L., Liu, Z., Dai, M., Wang, X., & Yuan, Z. (2012). Development and validation of an indirect competitive enzyme-linked immunosorbent assay for the screening of tylosin and tilmi- cosin in muscle, liver, milk, honey and eggs. Journal of Agricultural and Food Chemistry, 60(1), 44-51. doi:10.1021/ jf2037449
- Persano Oddo, L., & Bogdanov, S. (2004). Determination of honey botanical origin: Problems and issues. Apidologie, 35(Suppl. 1), S2-S3.:2004044 doi:10.1051/apido:2004044
- Piana, M. L., Persano Oddo, L., Bentabol, A., Bruneau, E., Bogdanov, S., & Guyot Declerck, C. (2004). Sensory ana- lysis applied to honey: State of the art. Apidologie, 35(Suppl.
- S26-S37.:2004048 doi:10.1051/apido:2004048
- Pirard, C., Widart, J., Nguyen, B. K., Deleuze, C., Heudt, L., Haubruge, E., Haubruge, E., DE Pauw, E., & Focant, J. F. (2007). Development and validation of a multi-residue method for pesticide determination in honey using on-col- umn liquid -liquid extraction and liquid chromatography - tandem mass spectrometry. Journal of Chromatography A, 1152(1-2), 116-123. doi:10.1016/j.chroma.2007.03.035
- Polzer, J., Kindt, K., Radeck, W., & Gowik, P. (2010 Determination of nitro-imidazoles in honey: Method devel- opment, validation and relevance in practice [Paper presen- tation]. Abstract Book of the 6th International Symposium on Hormone and Veterinary Drug Residue Analysis (Vol. 185, pp. 1-4). Ghent.
- Popa, I. D., Schiriac, E. C., & Cuciureanu, R. (2012). Multi-ana- lytic detection of antibiotic residues in honey using a multi- plexing biochip assay. Revista Medico-Chirurgicala a Societatii de Medici Si Naturalisti Din Iasi, 116(1), 324-329.
- Quintana-Rizzo, J., Salter, R. S., & Saul, S. J. (2005). Solid phase extraction procedures for validation of Charm II sulfonamide, streptomycin and chloramphenicol positives and detection of tylosin in honey. Apiacta, 40, 55-62. http://www.apimondia. com/apiacta/articles/2005/quintana-rizzo_1.pdf
- Rademacher, E., Fahlberg, A., Raddatz, M., Schneider, S., & Voigt, K. (2013). Galenics: Studies of the toxicity and distri- bution of sugar substitutes on Apis mellifera. Apidologie, 44(2), 222-233. doi:10.1007/s13592-012-0174-5
- Re, R., Pellegrini, N., Proteggente, A., Pannala, A., Yang, M., & Rice-Evans, C. (1999). Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radical Biology and Medicine, 26(9-10), 1231-1237.(98)00315- 3 doi:10.1016/S0891-5849(98)00315-3
- Regulation, E. (2005). Regulation (EU) No 396/2005 on max- imum residue levels of pesticides in or on food and feed of plant and animal origin, and amending Council Directive 91/
- /EEC. Official Journal of the European Union, L70, 1-16. https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri= CELEX:32005R0396&from=en
- Reybroeck, W. (2014). Quality control of honey and bee products. In Beekeeping for poverty alleviation and livelihood security (pp. 481-206). Springe. 10.1007/978-94-017-9199-1.
- Reybroeck, W. (2018). Residues of antibiotics and chemother- apeutics in honey. Journal of Apicultural Research, 57(1), 97-112. doi:10.1080/00218839.2017.1338129
- Reybroeck, W., & Ooghe, S. (2010). Detection of sulfa drugs in honey by Sulfa-Sensor Honey and Charm II Sulfa Test Honey: A comparison [Paper presentation]. Proceedings of the 4th European Conference of Apidology (p. 148). Kence M. Reybroeck, W., Daeseleire, E., de Brabander, H. F., & Herman, L. (2012). Antimicrobials in beekeeping. Veterinary Microbiology, 158(1-2), 1-11. doi:10.1016/j.vetmic.2012.01.012
- Reybroeck, W., Ooghe, S., DE Brabander, H., & Daeseleire, E. (2007). Validation of the tetrasensor honey test kit for the screening of tetracyclines in honey. Journal of Agricultural and Food Chemistry, 55(21), 8359-8366. doi:10.1021/jf071922p
- Rial-Otero, R., Gaspar, E. M., Moura, I., & Capelo, J. L. (2007). Chromatographic-based methods for pesticide determin- ation in honey: An overview. Talanta, 71(2), 503-514. doi: 10.1016/j.talanta.2006.05.033
- Rissato, S. R., Galhiane, M. S., DE Almeida, M. V., Gerenutti, M., & Apon, B. M. (2007). Multiresidue determination of L. B. de Almeida-Muradian et al. pesticides in honey samples by gas chromatography-mass spectrometry and application in environmental contamin- ation. Food Chemistry, 101(4), 1719-1726. doi:10.1016/j. foodchem.2005.10.034
- Roshan, A. R. A., Gad, H. A., EL-Ahmady, S. H., Khanbash, M. S., Abou-Shoer, M. I., & Al-Azizi, M. M. (2013). Authentication of monofloral yemeni sidr honey using ultra- violet spectroscopy and chemometric analysis. Journal of Agricultural and Food Chemistry, 61(32), 7722-7729. doi:10. 1021/jf402280y
- Roubik, D.W., & Moreno, J.E. (1991). Pollen and spores of Barro Colorado Island. Missouri Botanical Garden (pp. 268). (Monographs in Systematic Botany, n.36).
- Ruiz-Matute, A. I., Sanz, M. L., & Martinez-Castro, I. (2007). Use of gas chromatography-mass spectrometry for identifi- cation of a new disaccharide in honey. Journal of Chromatography A, 1157(1-2), 480-483. doi:10.1016/j. chroma.2007.05.056
- Ruoff, K., Karoui, R., Dufour, E., Luginb€ uhl, W., Bosset, J.-O., Bogdanov, S., & Amad o, R. (2005). Authentication of the botanical origin of honey by front-face fluorescence spec- troscopy. A preliminary study. Journal of Agricultural and Food Chemistry, 53(5), 1343-1347. doi:10.1021/jf048384q
- Ruoff, K., Luginb€ uhl, W., K€ unzli, R., Iglesias, M. T., Bogdanov, S., Bosset, J. O., von der Ohe, K., von der Ohe, W., & Amad o, R. (2006). Authentication of the botanical and geo- graphical origin of honey by mid-infrared spectroscopy. Journal of Agricultural and Food Chemistry, 54(18), 6873-6880. doi:10.1021/jf060838r
- Sabatini, A. G., Bortolotti, L., & Marcazzan, G. L. (Eds.). (2007). Conoscere il miele. Avenue Media.
- Salgado-Laurenti, C. R., Teller ıa, M. C., & Coronel, J. M. (2017). Botanical and geographical origin of honey from the dry and humid Chaco ecoregions (Argentina). Grana, 56(6), 450-461. doi:10.1080/00173134.2016.1276619
- Sancho, M. T., Pascual-Mat e, A., Rodr ıguez-Morales, E. G., Os es, S. M., Escriche, I., Periche, A., & Fern andez-Muiño,
- M. A. (2016). Critical assessment of antioxidant-related parameters of honey. International Journal of Food Science & Technology, 51(1), 30-36. doi:10.1111/ijfs.12988 SANCO. (2004). Summary record of the Standing Committee on the Food Chain and Animal Health held in Brussels on 21 September 2004 (Section Biological Safety of the Food Chain) (Section Controls and Import Conditions). Article 16, Statement of the Commission. SANCO -E.2(04)D/ 521927. https://ec.europa.eu/food/sites/food/files/safety/ docs/reg-com_cic_summary35_en.pdf Santos, K. S., Malaspina, O., & Palma, M. S. (2003, March). Cin etica da di astase em m eis de diferentes origens florais. Um novo protocolo experimental. Mensagem Doce, 70, 2-4.
- Schwaiger, I., & Schuch, R. (2000). Bound sulfathiazole residues in honey -need of a hydrolysis step for the analytical determination of total sulfathiazole content in honey. Deutsche Lebensmittel-Rundschauche Lebensmittel-Rundschau, 96(3), 93-98.
- Scortichini, G., Annunziata, L., Haouet, M. N., Benedetti, F., Krusteva, I., & Galarini, R. (2005). ELISA qualitative screen- ing of chloramphenicol in muscle, eggs, honey and milk: Method validation according to the Commission Decision 2002/657/EC criteria. Analytica Chimica Acta, 535(1-2), 43-48. doi:10.1016/j.aca.2004.12.004
- Shendy, A. H., Al-Ghobashy, M. A., Mohammed, M. N., Gad Alla, S. A., & Lotfy, H. M. (2016). Simultaneous determin- ation of 200 pesticide residues in honey using gas chroma- tography-tandem mass spectrometry in conjunction with streamlined quantification approach. Journal of Chromatography A, 1427, 142-160. doi:10.1016/j.chroma. 2015.11.068 Sheth, H. B., Stiles, M. E., Sporns, P., Yaylayan, V. A., & Low, N. H. (1990). Reaction of reducing sugars with sulfathiazole and importance of this reaction to sulfonamide residue ana- lysis using chromatographic, colorimetric, microbiological, or ELISA methods. Journal of Agricultural and Food Chemistry, 38(4), 1125-1130. doi:10.1021/jf00094a047
- Singh, S. K., Dwevedi, R., Deopa, P., & Krishna, V. (2014). A gradual advancement of the extraction and cleanup techni- ques for residue analysis of pesticides in food matrices and liquid products : A review. Iosr Journal of Environmental Science, Toxicology and Food Technology, 8(1), 113-118. https://pdfs.semanticscholar.org/2b36/bf5f5e0e60d0c972ceb5 3b71b830ce87779f.pdf doi:10.9790/2402-0815113118
- Sodr e, G. D. S., Marchini, L. C., Moreti, A. C. D. C. C., Otsuk, I. P., & Carvalho, C. A. L. D. (2011). Physico-chem- ical characteristics of honey produced by Apis mellifera in the Picos region, state of Piau ı, Brazil. Revista Brasileira de Zootecnia, 40(8), 1837-1843. doi:10.1590/S1516- 35982011000800030
- Souza Tette, P. A., Guidi, L. R., DE Abreu Gl oria, M. B., & Fernandes, C. (2016). Pesticides in honey: A review on chromatographic analytical methods. Talanta, 149, 124-141. doi:10.1016/j.talanta.2015.11.045
- Sporns, P., Kwan, S., & Roth, L. A. (1986). HPLC analysis of oxytetracycline residues in honey. Journal of Food Protection, 49(5), 383-388. doi:10.4315/0362-028X-49.5.383
- Tahboub, Y. R., Zaater, M. F., & Barri, T. A. (2006). Simultaneous identification and quantitation of selected organochlorine pesticide residues in honey by full-scan gas chromatography-mass spectrometry. Analytica Chimica Acta, 558(1-2), 62-68. doi:10.1016/j.aca.2005.11.004
- Tarbin, J. A., Read, W., & Sharman, M. (2010 Development and validation of a rapid method for the determination of fumagillin in honey [Paper presentation]. Abstract Book of the 6th International Symposium on Hormone and Veterinary Drug Residue Analysis (Vol. 217, pp. 1-4). Ghent. The European Parliament and the Council of European Union. (2009). Regulation (EC) No 470/2009 of the European Parliament and of the Council of 6 May 2009 laying down Community procedures for the establishment of residue limits of pharmacologically active substances in foodstuffs of animal origin, repealing Council Regulation (EEC) No 2377/ 90 and amending Directive 2001/82/EC of the European Parliament and of the Council and Regulation (EC) No 726/ 2004 of the European Parliament and of the Council laying down a Community procedure for the establishment of maximum residue limits of veterinary medicinal products in foodstuffs of animal origin. Official Journal of the European Union, L152, 11-22.
- Thompson, T. S., Pernal, S. F., Noot, D. K., Melathopoulos, A. P., & VAN DEN Heever, J. P. (2007). Degradation of incurred tylosin to desmycosin-Implications for residue ana- lysis of honey. Analytica Chimica Acta, 586(1-2), 304-311. doi:10.1016/j.aca.2006.09.043
- Thongchai, W., Liawruangath, B., Liawruangrath, S., & Greenway, G. M. (2010). A microflow chemiluminescence system for determination of chloramphenicol in honey with preconcentration using a molecularly imprinted polymer. Talanta, 82(2), 560-566. doi:10.1016/j.talanta.2010.05.007
- Thrasyvoulou, A., Tananaki, C., Goras, G., Karazafiris, E., Dimou, M., Liolios, V., Kanelis, D., & Gounari, S. (2018). Legislation of honey criteria and standards. Journal of Apicultural Research, 57(1), 88-96. doi:10.1080/00218839. 2017.1411181
- Tomasini, D., Sampaio, M. R. F., Caldas, S. S., Buffon, J. G., Duarte, F. A., & Primel, E. G. (2012). Simultaneous deter- mination of pesticides and 5-hydroxymethylfurfural in honey by the modified QuEChERS method and liquid chromatography coupled to tandem mass spectrometry.
- Talanta, 99, 380-386. doi:10.1016/j.talanta.2012.05.068
- Tomasini, D., Sampaio, M. R. F., Cardoso, L. V., Caldas, S. S., & Primel, E. G. (2011). Comparison of dispersive liquid-li- quid microextraction and the modified QuEChERS method for the determination of fipronil in honey by high perform- ance liquid chromatography with diode-array detection. Analytical Methods, 3(8), 1893. doi:10.1039/c1ay05221g
- Tribalat, L., Paisse, O., Dessalces, G., & Grenier-Loustalot, M. F. (2006). Advantages of LC-MS-MS compared to LC-MS for the determination of nitrofuran residues in honey. Analytical and Bioanalytical Chemistry, 386(7-8), 2161-2168. doi:10.1007/s00216-006-0878-3
- Tuberoso, C. I. G., Jerkovi c, I., Sarais, G., Congiu, F., Marijanovi c, Z., & Ku s, P. M. (2014). Color evaluation of seventeen European unifloral honey types by means of spectrophotometrically determined CIEL â ^-Cab â ^-Hab â ĉhromaticity coordinates. Food Chemistry, 145, 284-291. doi:10.1016/j.foodchem.2013.08.032
- U.S. Environmental Protection Agency (EPA). (2013, June). A summary of analytical methods used for the analyses of pesti- cide residues in bees and hive matrices. U. S. Environmental Protection Agency Region 5, Land and Chemicals Division, Chemicals Management Branch, pp. 1-10. https://www.epa. gov/sites/production/files/2013-09/documents/bee-analytical- methods.pdf Uran, H., Aksu, F., & Altiner, D. D. (2017). A research on the chemical and microbiological qualities of honeys sold in Istanbul. Food Science and Technology, 37(suppl 1), 30-33. (doi:10.1590/1678-457x.32016
- Valera, E., Muriano, A., Pividori, I., S anchez-Baeza, F., & Marco, M. P. (2013). Development of a Coulombimetric immuno- sensor based on specific antibodies labeled with CdS nano- particles for sulfonamide antibiotic residues analysis and its application to honey samples. Biosensors and Bioelectronics, 43(1), 211-217. doi:10.1016/j.bios.2012.12.017
- VAN Bruijnsvoort, M., Ottink, S. J. M., Jonker, K. M., & DE Boer, E. (2004). Determination of streptomycin and dihy- drostreptomycin in milk and honey by liquid chromatog- raphy with tandem mass spectrometry. Journal of Chromatography A, 1058(1-2), 137-142. doi:10.1016/j. chroma.2004.07.101
- Verzegnassi, L., Savoy-Perroud, M. C., & Stadler, R. H. (2002). Application of liquid chromatography-electrospray ioniza- tion tandem mass spectrometry to the detection of 10 sul- fonamides in honey. Journal of Chromatography A, 977(1), 77-87. doi:10.1016/S0021-9673(02)01341-9
- Vilca, F. Z., Corrreia-Oliveira, M. E., Leal, R. M. P., Monteiro, S. H., Zanardi, O. Z., Marchini, L. C., & Tornisielo, V. L., (2012). Quechers approach for the determination of seven pesticide residues in Brazilian honey samples using GC- mECD. Journal of Food Science and Engineering, 2, 163-169.
- Vit, P., Pedro, S. R., & Roubik, D. (2018). Pot-pollen in stingless bee melittology. Springer, 481p. von der Ohe, W., Persano Oddo, L., Piana, M. L., Morlot, M., & Martin, P. (2004). Harmonized methods of melissopalynology. Apidologie, 35(Suppl. 1), S18-S25. 10. 1051/apido:2004050
- Wang, S., Yong, W., Liu, J., Zhang, L., Chen, Q., & Dong, Y. (2014). Development of an indirect competitive assay-based aptasensor for highly sensitive detection of tetracycline residue in honey. Biosensors and Bioelectronics, 57, 192-198. doi:10.1016/j.bios.2014.02.032
- Weigel, S., Gatermann, R., & Harder, W. (2005). Screening of honey for residues of antibiotics by an optical biosensor. Apiacta, 40, 63-69. http://www.apimondia.com/apiacta/ articles/2005/weigel_1.pdf WHO (World Health Organization). (1996). Trace elements in human nutrition and health World Health Organization, pp. 1-360.
- WHO/FAO. (2002). Food energy -methods of analysis and conver- sion. Fao Food and Nutrition Paper. https://doi.org/0254-4725
- Wiest, L., Bulet e, A., Giroud, B., Fratta, C., Amic, S., Lambert, O., Pouliquen, H., & Arnaudguilhem, C. (2011). Multi-resi- due analysis of 80 environmental contaminants in honeys, honey bees and pollens by one extraction procedure fol- lowed by liquid and gas chromatography coupled with mass spectrometric detection. Journal of Chromatography A, 1218(34), 5743-5756. doi:10.1016/j.chroma.2011.06.079
- Wu, Z., Chen, L., Wu, L., Xue, X., Zhao, J., Li, Y., Ye, Z., & Lin, G. (2015). Classification of Chinese honeys according to their floral origins using elemental and stable isotopic compositions. Journal of Agricultural and Food Chemistry, 63(22), 5388-5394. doi:10.1021/acs.jafc.5b01576
- Yu, J., Wu, C., & Xing, J. (2004). Development of new solid- phase microextraction fibers by sol-gel technology for the determination of organophosphorus pesticide multiresidues in food. Journal of Chromatography A, 1036(2), 101-111. doi: 10.1016/j.chroma.2004.02.081
- Y€ ucel, Y., & Sultanoglu, P. (2013). Characterization of honeys from Hatay Region by their physicochemical properties combined with chemometrics. Food Bioscience, 1, 16-25. doi:10.1016/j.fbio.2013.02.001
- Zacharis, C. K., Rotsias, I., Zachariadis, P. G., & Zotos, A. (2012). Dispersive liquid-liquid microextraction for the determination of organochlorine pesticides residues in honey by gas chromatography-electron capture and ion trap mass spectrometric detection. Food Chemistry, 134(3), 1665-1672. doi:10.1016/j.foodchem.2012.03.073
- Zander, E., & Maurizio, A. (1975). Der Honig. In A. Maurizio (Ed.), Handbuch der Bienenkunde (2nd ed., pp. 212). Verlag Eugen Ulmer, Stuttgart.
- Zhou, J., Qi, Y., Ritho, J., Duan, L., Wu, L., Diao, Q., Li, Y., & Zhao, J. (2014, February). Analysis of maltooligosaccharides in honey samples by ultra-performance liquid chromatog- raphy coupled with evaporative light scattering detection. Food Research International, 56, 260-265. doi:10.1016/j.foo- dres.2014.01.014
- Zhou, N., Wang, J., Zhang, J., Li, C., Tian, Y., & Wang, J. (2013). Selection and identification of streptomycin-specific single-stranded DNA aptamers and the application in the detection of streptomycin in honey. Talanta, 108, 109-116. doi:10.1016/j.talanta.2013.01.064