Academia.eduAcademia.edu

Outline

Conformal anti-invariant $\xi^\perp-$submersions

2017, arXiv (Cornell University)

Abstract

As a generalization of anti-invariant ξ ⊥ −Riemannian submersions, we introduce conformal anti-invariant ξ ⊥ −submersions from almost contact metric manifolds onto Riemannian manifolds. We investigate the geometry of foliations which are arisen from the definition of a conformal submersion and find necessary and sufficient conditions for a conformal anti-invariant ξ ⊥ −submersion to be totally geodesic and harmonic, respectively. Moreover, we show that there are certain product structures on the total space of a conformal anti-invariant ξ ⊥ −submersion.

References (45)

  1. Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of Mathematics and Statistics, (In Press), Doi: 10.15672/HJMS.20174720336, (2016).
  2. Akyol, M. A., Sarı, R. and Aksoy, E., Semi-invariant ξ ⊥ -Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys., (Accepted), (2017).
  3. Akyol, M. A. and S ¸ahin B., Conformal anti-invariant submersions from almost Hermitian manifolds, Turkish J. Math. 40, (2016), 43-70.
  4. Akyol, M. A. and S ¸ahin B., Conformal semi-invariant submersions, Communications in Con- temporary Mathematics, (In press), DOI: 10.1142/S02191997165001151650011.
  5. Blair, D. E., Contact manifold in Riemannain geometry, Lecture Notes in Math. 509, Springer- Verlag, Berlin-New York, (1976).
  6. Baird, P. and Wood, J. C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press. Ox- ford, 2003.
  7. Beri, A., Erken, İ. K. and Murathan, C., Anti-invariant Riemannian submersions from Ken- motsu manifolds onto Riemannian manifolds, 40(3), (2016), 540-552.
  8. Cengizhan, M. and Erken, I. K., Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions, Filomat. 29(7), (2015), 1429-1444.
  9. Chen, B. Y., Riemannian submanifolds, Handbook of differential geometry. North-Holland, Amsterdam Vol. I, 2000, 187-418.
  10. Chinea, D., Harmonicity on maps between almost contact metric manifolds. Acta Math. Hun- gar. (2010); 126(4): 352-365.
  11. Chinea, D., Harmonicity of holomorphic maps between almost Hermitian manifolds. Canad. Math. Bull. (2009); 52(1): 18-27.
  12. Chinea, D., On horizontally conformal (φ, φ ′ )-holomorphic submersions. Houston J. Math. (2008); 34(3): 721-737.
  13. Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, (1985), 34(1): 89-104.
  14. Fuglede, B., Harmonic Morphisms Between Riemannian Manifolds, Ann. Inst. Fourier (Greno- ble) 28 (1978), 107-144.
  15. Falcitelli, M., Ianus, S. and Pastore, A. M., Riemannian submersions and Related Topics. World Scientific, River Edge, NJ, 2004.
  16. Gilkey, P., Itoh, M. and Park, J., Anti-invariant Riemannian submersions: A Lie-theoretical Approach, Taiwanese J. Math, 20(4), (2016), 787-800.
  17. Gundmundsson, S., The Geometry of Harmonic Morphisms, Ph.D. Thesis, University of Leeds, (1992).
  18. Gundmundsson, S. and Wood, J. C., Harmonic Morphisms between almost Hermitian mani- folds, Boll. Un. Mat. Ital. B. (1997), 11(2):185-197.
  19. Gündüzalp, Y., Slant submersions from almost product Riemannian manifolds, Turkish J. Math., 37: 863-873 (2013).
  20. Gündüzalp, Y., Anti-invariant semi-Riemannian submersions from almost para-Hermitian manifolds, Journal of Function Spaces and Applications, Volume 2013, Article ID 720623, 7 pages.
  21. Gündüzalp, Y., Anti-invariant Riemannian submersions from almost product Riemannian manifolds, Mathematical Science and Applications E-notes. 1(1), (2013), 58-66.
  22. Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
  23. Ishıhara, T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. kyoto Univ. 19 (1979), 215-229.
  24. Lee, J. W., Anti-invariant ξ ⊥ -Riemannian submersions from almost contact manifolds, Hacettepe Journal of Mathematics and Statistic, 42(3), (2013), 231-241.
  25. Lee, J. C., Park, J. H., S ¸ahin B. and Song D. Y., Einstein conditions for the base space of anti- invariant Riemannian submersions and Clairaut submersions, Taiwanese J. Math. In press. DOI: 10.11650/tjm.19.2015.5283.
  26. Ianus, S., Ionescu, M., Mazzocco, R. and Vilcu, G. E., Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hamb. 81(2011), no:1, 101-114.
  27. Ianus, S., Mazzocco, R. and Vilcu, G. E., Riemannian submersions from quaternionic mani- folds, Acta Appl. Math., (2008), 104(1), 83-89.
  28. O'Neill, B., The fundamental equations of a submersion. Mich. Math. J., 1966, 13, 458-469.
  29. Ornea, L. and Romani, G., The fundamental equations of a conformal submersions, Beitrague Z. Algebra and Geometrie Contributions Algebra and Geometry, 34 (2), (1993), 233-243.
  30. Park, K. S. and Prasad, R., H-anti-invariant submersions from almost quaternionic Hermitian manifolds, arXiv:1507.04473 [math.DG].
  31. Park, K. S. and Prasad, R., Semi-slant submersions. Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962.
  32. Park, K. S., h-semi-invariant submersions. Taiwanese J. Math. 16 (2012), no. 5, 18651878.
  33. Park, K. S., h-slant submersions. Bull. Korean Math. Soc. 49 (2012), no. 2, 329338.
  34. Ponge, R. and Reckziegel, H., Twisted products in pseudo-Riemannian geometry,Geom. Ded- icata. 1993; 48(1):15-25.
  35. Shahid, A. and Tanveer, F., Anti-invariant Riemannian submersions from nearly Kählerian mani-folds, Filomat 27(7)(2013) 1219-1235.
  36. Shahid, A. and Tanveer, F., Generic Riemannian submersions, Tamkang Journal of Mathe- matics, Volume 4, Number 4, (2013), 395-409. doi:10.5556/j.tkjm.44.2013.1211.
  37. Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with contact metric structure, J. Math. Soc. Japan, 14, 249-271, 1961.
  38. S ¸ahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. European J. Math, no. 3, (2010), 437-447.
  39. S ¸ahin, B., Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull, 56 (2011), 173.
  40. S ¸ahin, B., Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 1 (2011), 93-105.
  41. S ¸ahin, B., Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math., 17, No. 2, (2012), 629-659.
  42. Taştan, H. M., On Lagrangian submersions, Hacettepe J. Math. Stat. 43(6), (2014) 993-1000.
  43. Watson, B., Almost Hermitian submersions, J. Differential Geometry, 11(1), 1976, 147-165.
  44. Urakawa, H., Calculus of Variations and Harmonic Maps, Amerikan Math. Soc. 132, (1993).
  45. Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984. Bingöl University, Faculty of Arts and Sciences, Deparment of Mathematics, 12000, Bingöl, Turkey E-mail address: mehmetakifakyol@bingol.edu.tr