Conformal anti-invariant $\xi^\perp-$submersions
2017, arXiv (Cornell University)
Abstract
As a generalization of anti-invariant ξ ⊥ −Riemannian submersions, we introduce conformal anti-invariant ξ ⊥ −submersions from almost contact metric manifolds onto Riemannian manifolds. We investigate the geometry of foliations which are arisen from the definition of a conformal submersion and find necessary and sufficient conditions for a conformal anti-invariant ξ ⊥ −submersion to be totally geodesic and harmonic, respectively. Moreover, we show that there are certain product structures on the total space of a conformal anti-invariant ξ ⊥ −submersion.
References (45)
- Akyol, M. A., Conformal anti-invariant submersions from cosymplectic manifolds, Hacettepe Journal of Mathematics and Statistics, (In Press), Doi: 10.15672/HJMS.20174720336, (2016).
- Akyol, M. A., Sarı, R. and Aksoy, E., Semi-invariant ξ ⊥ -Riemannian submersions from almost contact metric manifolds, Int. J. Geom. Methods Mod. Phys., (Accepted), (2017).
- Akyol, M. A. and S ¸ahin B., Conformal anti-invariant submersions from almost Hermitian manifolds, Turkish J. Math. 40, (2016), 43-70.
- Akyol, M. A. and S ¸ahin B., Conformal semi-invariant submersions, Communications in Con- temporary Mathematics, (In press), DOI: 10.1142/S02191997165001151650011.
- Blair, D. E., Contact manifold in Riemannain geometry, Lecture Notes in Math. 509, Springer- Verlag, Berlin-New York, (1976).
- Baird, P. and Wood, J. C., Harmonic Morphisms Between Riemannian Manifolds, London Mathematical Society Monographs, 29, Oxford University Press, The Clarendon Press. Ox- ford, 2003.
- Beri, A., Erken, İ. K. and Murathan, C., Anti-invariant Riemannian submersions from Ken- motsu manifolds onto Riemannian manifolds, 40(3), (2016), 540-552.
- Cengizhan, M. and Erken, I. K., Anti-invariant Riemannian submersions from cosymplectic manifolds onto Riemannian submersions, Filomat. 29(7), (2015), 1429-1444.
- Chen, B. Y., Riemannian submanifolds, Handbook of differential geometry. North-Holland, Amsterdam Vol. I, 2000, 187-418.
- Chinea, D., Harmonicity on maps between almost contact metric manifolds. Acta Math. Hun- gar. (2010); 126(4): 352-365.
- Chinea, D., Harmonicity of holomorphic maps between almost Hermitian manifolds. Canad. Math. Bull. (2009); 52(1): 18-27.
- Chinea, D., On horizontally conformal (φ, φ ′ )-holomorphic submersions. Houston J. Math. (2008); 34(3): 721-737.
- Chinea, D., Almost contact metric submersions. Rend. Circ. Mat. Palermo, (1985), 34(1): 89-104.
- Fuglede, B., Harmonic Morphisms Between Riemannian Manifolds, Ann. Inst. Fourier (Greno- ble) 28 (1978), 107-144.
- Falcitelli, M., Ianus, S. and Pastore, A. M., Riemannian submersions and Related Topics. World Scientific, River Edge, NJ, 2004.
- Gilkey, P., Itoh, M. and Park, J., Anti-invariant Riemannian submersions: A Lie-theoretical Approach, Taiwanese J. Math, 20(4), (2016), 787-800.
- Gundmundsson, S., The Geometry of Harmonic Morphisms, Ph.D. Thesis, University of Leeds, (1992).
- Gundmundsson, S. and Wood, J. C., Harmonic Morphisms between almost Hermitian mani- folds, Boll. Un. Mat. Ital. B. (1997), 11(2):185-197.
- Gündüzalp, Y., Slant submersions from almost product Riemannian manifolds, Turkish J. Math., 37: 863-873 (2013).
- Gündüzalp, Y., Anti-invariant semi-Riemannian submersions from almost para-Hermitian manifolds, Journal of Function Spaces and Applications, Volume 2013, Article ID 720623, 7 pages.
- Gündüzalp, Y., Anti-invariant Riemannian submersions from almost product Riemannian manifolds, Mathematical Science and Applications E-notes. 1(1), (2013), 58-66.
- Gray, A., Pseudo-Riemannian almost product manifolds and submersions, J. Math. Mech. 16 (1967), 715-737.
- Ishıhara, T., A mapping of Riemannian manifolds which preserves harmonic functions, J. Math. kyoto Univ. 19 (1979), 215-229.
- Lee, J. W., Anti-invariant ξ ⊥ -Riemannian submersions from almost contact manifolds, Hacettepe Journal of Mathematics and Statistic, 42(3), (2013), 231-241.
- Lee, J. C., Park, J. H., S ¸ahin B. and Song D. Y., Einstein conditions for the base space of anti- invariant Riemannian submersions and Clairaut submersions, Taiwanese J. Math. In press. DOI: 10.11650/tjm.19.2015.5283.
- Ianus, S., Ionescu, M., Mazzocco, R. and Vilcu, G. E., Riemannian submersions from almost contact metric manifolds, Abh. Math. Semin. Univ. Hamb. 81(2011), no:1, 101-114.
- Ianus, S., Mazzocco, R. and Vilcu, G. E., Riemannian submersions from quaternionic mani- folds, Acta Appl. Math., (2008), 104(1), 83-89.
- O'Neill, B., The fundamental equations of a submersion. Mich. Math. J., 1966, 13, 458-469.
- Ornea, L. and Romani, G., The fundamental equations of a conformal submersions, Beitrague Z. Algebra and Geometrie Contributions Algebra and Geometry, 34 (2), (1993), 233-243.
- Park, K. S. and Prasad, R., H-anti-invariant submersions from almost quaternionic Hermitian manifolds, arXiv:1507.04473 [math.DG].
- Park, K. S. and Prasad, R., Semi-slant submersions. Bull. Korean Math. Soc. 50 (2013), no. 3, 951-962.
- Park, K. S., h-semi-invariant submersions. Taiwanese J. Math. 16 (2012), no. 5, 18651878.
- Park, K. S., h-slant submersions. Bull. Korean Math. Soc. 49 (2012), no. 2, 329338.
- Ponge, R. and Reckziegel, H., Twisted products in pseudo-Riemannian geometry,Geom. Ded- icata. 1993; 48(1):15-25.
- Shahid, A. and Tanveer, F., Anti-invariant Riemannian submersions from nearly Kählerian mani-folds, Filomat 27(7)(2013) 1219-1235.
- Shahid, A. and Tanveer, F., Generic Riemannian submersions, Tamkang Journal of Mathe- matics, Volume 4, Number 4, (2013), 395-409. doi:10.5556/j.tkjm.44.2013.1211.
- Sasaki, S. and Hatakeyama, Y., On differentiable manifolds with contact metric structure, J. Math. Soc. Japan, 14, 249-271, 1961.
- S ¸ahin, B., Anti-invariant Riemannian submersions from almost Hermitian manifolds, Cent. European J. Math, no. 3, (2010), 437-447.
- S ¸ahin, B., Semi-invariant Riemannian submersions from almost Hermitian manifolds, Canad. Math. Bull, 56 (2011), 173.
- S ¸ahin, B., Slant submersions from almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. Roumanie, 1 (2011), 93-105.
- S ¸ahin, B., Riemannian submersions from almost Hermitian manifolds, Taiwanese J. Math., 17, No. 2, (2012), 629-659.
- Taştan, H. M., On Lagrangian submersions, Hacettepe J. Math. Stat. 43(6), (2014) 993-1000.
- Watson, B., Almost Hermitian submersions, J. Differential Geometry, 11(1), 1976, 147-165.
- Urakawa, H., Calculus of Variations and Harmonic Maps, Amerikan Math. Soc. 132, (1993).
- Yano, K. and Kon, M., Structures on Manifolds, World Scientific, Singapore, 1984. Bingöl University, Faculty of Arts and Sciences, Deparment of Mathematics, 12000, Bingöl, Turkey E-mail address: mehmetakifakyol@bingol.edu.tr