A count of maximal small copies in Multibrot sets
2005, Nonlinearity
https://doi.org/10.1088/0951-7715/18/5/004Abstract
We give a recursive formula to count maximal small copies of the Mandelbrot set and its higher degree analogues. This formula is used to compute the asymptotic growth of the number of maximal small copies of period n.
References (6)
- Douady A and Hubbard J H 1984-85 Étude dynamique des polynômes complexes I and II Publ. Math. Orsay 84-2 and 85-4
- Eberlein D Rational parameter rays of Multibrot sets Diploma Thesis Technische Universität München, available at: ftp://ftp.math.sunysb.edu/theses/thesis99-2/part1.ps.gz
- Lutzky M 1993 Counting hyperbolic components of the Mandelbrot set Phys. Lett. A 177 338-40
- Milnor J 1989 Self-similarity and hairiness in the Mandelbrot set Computers in Geometry and Topology (Lecture Notes in Pure and Applied Mathematics vol 114) (New York: Dekker) pp 211-57
- McMullen C 2000 The Mandelbrot set is universal The Mandelbrot Set, Theme and Variations (Cambridge: Cambridge University Press)
- Niven I, Zuckerman H S and Montgomery H L 1991 An Introduction to the Theory of Numbers 5th edn (New York: Wiley)