Upper Bounds for Cyclotomic Numbers
2019, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.1903.07314Abstract
Let q be a power of a prime p, let k be a nontrivial divisor of q − 1 and write e = (q − 1)/k. We study upper bounds for cyclotomic numbers (a, b) of order e over the finite field F q. A general result of our study is that (a, b) ≤ 3 for all a, b ∈ Z if p > (√ 14) k/ ord k (p). More conclusive results will be obtained through seperate investigation of the five types of cyclotomic numbers: (0, 0), (0, a), (a, 0), (a, a) and (a, b), where a = b and a, b ∈ {1,. .. , e − 1}. The main idea we use is to transform equations over F q into equations over the field of complex numbers on which we have more information. A major tool for the improvements we obtain over known results is new upper bounds on the norm of cyclotomic integers.
Key takeaways
AI
AI
- The main result states that cyclotomic numbers (a, b) are bounded by 3 given specific conditions on p and k.
- Upper bounds for cyclotomic numbers are explored through five types: (0, 0), (0, a), (a, 0), (a, a), and (a, b).
- The research focuses on simplifying conditions for p, which is a prime, ensuring manageable upper bounds for cyclotomic numbers.
- Improvements over existing results arise from new bounds on the norms of cyclotomic integers and their transformation to complex fields.
- The study contributes to the applications of cyclotomic numbers in areas like Jacobi sums and Fermat's Last Theorem.
References (14)
- M. K. Agrawal, J. C. Parnami, A. R. Rajwade Jacobi sums and cyclo- tomic numbers for a finite field. Acta Arith. 41(1) (1982), 1-13.
- K. Betshumiya, M. Hirasaka, T. Komatsu, A. Munemasa: Upper bounds on cyclotomic numbers. Linear Algebra and its Applications (2013).
- J. H. Conway and A. J. Jones: Triginomertic diophantine equations (On vanishing sums of roots of unity) Acta Arithmetica (1976).
- P. J. Davis: Circulant matrices. Chelsea Publishing 1979.
- S. A. Katre: Cyclotomic Numbers and A Conjecture of Snapper. Indian J. pure appl. Math. 20(2) (1989), 99-103.
- T. Y. Lam, K. H. Leung: On vanishing sums of roots of unity J. Algebra textbf224(1) (2000), 91-109.
- E. Lehmer, H. S. Vandiver: On the computation of the number of so- lutions of certain trinomial congruences. J. Assoc. Comput. Mach. 4 (1957), 505-510.
- R.E.A.C. Paley: On orthogonal matrices. J. Math. Phys. 12 (1933), 311-320.
- A. Schinzel: An inequality for determinants with real entries. Colloq. Math. 38 (1977/78), 319321.
- T. Storer: Cyclotomy and difference sets. Lectures in Advanced Math- ematics 2, Markham Publishing Co. 1967.
- H. S. Vandiver: New types of trinomial congruence criteria applying to Fermat's last theorem. Proc. Nat. Acad. Sci. U. S. A. 40 (1954), 248-252.
- H. S. Vandiver: On trinomial equations in a finite field. Proc. Nat. Acad. Sci. U. S. A. 40 (1954). 1008-1010.
- H. S. Vandiver: Relation of the theory of certain trinomial equations in a finite field to Fermat's last theorem. Proc. Nat. Acad. Sci. U. S. A. 41 (1955), 770-775.
- H. S. Vandiver: On distribution problems involving the numbers of so- lutions of certain trinomial congruences. Proc. Nat. Acad. Sci. U. S. A. 45 (1959), 1635-1641.