Academia.eduAcademia.edu

Outline

On nonlinear elliptic problems with discontinuities

Abstract

In this paper we examine nonlinear elliptic equations driven by the p-Laplacian and with a discontinuous forcing term. To develop an existence theory we pass to an elliptic inclusion by filling in the gaps at the discontinuity points of the forcing term. We prove three existence theorems. The first is a multiplicity result and proves the existence of two bounded solutions one strictly positive and the other strictly negative. The other two theorems deal with problems at resonance and prove the existence of solutions using Landesman-Lazer type conditions.

References (25)

  1. R. ADAMS, Sobolev Spaces, Academic Press, New York (1975).
  2. A. AMBROSETTI -M. BADIALE, The dual variational principle and elliptic problems with discontinuities, J. Math. Anal. Appl, 140 (1989), pp. 363- 373.
  3. A. ANANE, Etude des Valeurs Propres et de la Resonance pour l'Operateur p-Laplacien, Ph. D. Thesis, Universite Libre de Bruxelles (1988).
  4. A. ANANE -J. P. GOSSEZ, Stongly nonlinear elliptic problems near reso- nance: A variational approch, Comm. Partial Diff. Equations, 15 (1990), pp. 1141-1159.
  5. A. ANANE -N. TSOULI, On the second eigenvalue of the p-Laplacian, in Non- linear Partial Differential Equations, eds. A. Benkirane -J.-P. Gossez, Pit- man Research Notes in Math, Vol. 343, Longman, Harlow, UK (1996), pp. 1-9.
  6. D. ARCOYA -M. CALAHORRANO, Some discontinuous problems with a quasi- linear operator, J. Math. Anal. Appl, 187 (1994), pp. 1052-1072.
  7. L. BOCCARDO -P. DRABEK -D. GIACHETTI -M. KUCERA, A generalization of Fredholm alternative for nonilinear differential operatos, Nonlin. Anal., 10 (1986), pp. 1083-1103.
  8. S. CARL -H. DIETRICH, The weak upper and lower solution methods for quasilinear elliptic equations with generalized subdifferentiable petruba- tions, Appl. Anal., 56 (1995), pp. 263-278.
  9. K.-C. CHANG, Variational methods for nondifferentiable functionals and their applications to partial differential equations, J. Math. Anal. Appl., 80 (1981), pp. 102-129.
  10. D. COSTA -C. MAGALHAES, Existence results for perturbations of the p- Laplacian, Nonlin. Anal., 24 (1995), pp. 409-418.
  11. A. EL HACHIMI -J.-P. GOSSEZ, A note on a nonresonance condition for a quasilinear elliptic problem, Nonlin. Anal, 22 (1994), pp. 229-234.
  12. J. GARCIA MELIAN-J. SABINA DE LIS, Maximum and comparison principles for operators involving the p-Laplacian, J. Math. Appl., 218 (1998), pp. 49-65.
  13. D. GILBARG -N. TRUNDINGER, Elliptic Partial Equations of Second Order, Springer Verlag, New York (2nd edition) (1983).
  14. S. HU -N. S. PAPAGEORGIOU, Handbook of Multivalued Analysis. Volume I: Theory, Kluwer, Dordrecht, The Netherlands (1997).
  15. S. HU -N. S. PAPAGEORGIOU, Handbook of Multivalued Analysis. Volume II: Applications, Kluwer, Dordrecht, The Netherlands (2000).
  16. O. LADYZHENSKAYA -N. URALTSEVA, Linear and Quasilinear Elliptic Equa- tions, Academic Press, New York (1968).
  17. E. M. LANDESMAN -A. LAZER, Nonlinear petrubations of linear elliptic boundary value problems at resonance, J. Math. Mech, 19 (1970), pp. 609-623.
  18. E. M. LANDESMAN -S. ROBINSON -A. RUMBOS, Multiple solutions of semilin- ear elliptic problems at resonance, Nonlin. Anal., 24 (1995), pp. 1049- 1059.
  19. G. M. LIEBERMAN, Boundary regularity for solutions of degenerate elliptic equations, Nonlin Anal., 12 (1988), pp. 1203-1219.
  20. P. LINDQVIST, On the equation div (NDxN p 2 2 Dx) 1 lNxN p 2 2 x 4 0, Proc. AMS, 109 (1991), pp. 157-164.
  21. J. RAUCH, Discontinuous semilinear differential equations and multiple valued maps, Proc. AMS, 64 (1977), pp. 277-282.
  22. S. ROBINSON -E. M. LANDESMAN, A general approach to semilinear elliptic boundary value problems at resonance, Diff. and Inegral Eqns-to ap- pear.
  23. C. STUART, Maximal and minimal solutions of elliptic equaitons with dis- continuouis nonlinearities, Math. Z., 163 (1978), pp. 238-249.
  24. J. L. VAZQUEZ, A strong maximum principle for some quasilinear elliptic equations, Applied math. Optim., 12 (1984), pp. 191-202.
  25. E. ZEIDLER, Nonlinear Functional Analysis and its Applications II, Springer Verlag, New York (1990).