On subgroup perfect codes in Cayley graphs
2020, arXiv (Cornell University)
https://doi.org/10.48550/ARXIV.2006.11104Abstract
A perfect code in a graph Γ = (V, E) is a subset C of V such that no two vertices in C are adjacent and every vertex in V \ C is adjacent to exactly one vertex in C. A subgroup H of a group G is called a subgroup perfect code of G if there exists a Cayley graph of G which admits H as a perfect code. Equivalently, H is a subgroup perfect code of G if there exists an inverse-closed subset A of G containing the identity element such that (A, H) is a tiling of G in the sense that every element of G can be uniquely expressed as the product of an element of A and an element of H. In this paper we obtain multiple results on subgroup perfect codes of finite groups, including a few necessary and sufficient conditions for a subgroup of a finite group to be a subgroup perfect code, a few results involving 2-subgroups in the study of subgroup perfect codes, and several results on subgroup perfect codes of metabelian groups, generalized dihedral groups, nilpotent groups and 2-groups.
References (27)
- E. Bannai, On perfect codes in the Hamming schemes H(n, q) with q arbitrary, J. Combin. Theory Ser. A 23 (1977) 52-67.
- E. Bannai, Codes in bipartite distance-regular graphs, J. London Math. Soc. (2) 16 (1977) 197-202.
- N. L. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289-296.
- A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular Graphs, Springer- Verlag, Berlin, 1989.
- I. J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Appl. Math. 129 (2003) 319-328.
- P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10, 1973.
- Y-P. Deng, Y-Q. Sun, Q. Liu and H.-C. Wang, Efficient dominating sets in circulant graphs, Discrete Math. 340 (2017) 1503-1507.
- M. Dinitz, Full rank tilings of finite abelian groups, SIAM J. Discrete Math. 20 (2006) 160-170.
- R. Feng, H. Huang, and S. Zhou, Perfect codes in circulant graphs, Discret. Math. 340 (2017) 1522-1527.
- P. Hammond and D. H. Smith, Perfect codes in the graphs O k , J. Combin. Theory Ser. B 19 (1975) 239-255.
- G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1942) 427-467.
- T. W. Haynes, S. T. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
- O. Heden, A survey of perfect codes, Adv. Math. Commun. 2 (2008) 223-247.
- P. Horak and D. Kim, 50 years of the Golomb-Welch conjecture, IEEE Trans. Inform. Theory 64 (2018) 3048-3061.
- H. Huang, B. Xia, and S. Zhou, Perfect codes in Cayley graphs, SIAM J. Discrete Math. 32 (2018) 548-559.
- J. Kratochvíl, Perfect codes over graphs, J. Combin. Theory Ser. B 40 (1986) 224- 228.
- H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduction, Universitext, Springer, New York-Berlin-Heidelberg, 2004.
- J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theory 37 (2001) 213-219.
- H. W. Lenstra, Jr., Two theorems on perfect codes, Discrete Math. 3 (1972) 125-132.
- J. H. van Lint, A survey of perfect codes, Rocky Mountain J. Math. 5 (1975) 199-224.
- X. Ma, G. L. Walls, K. Wang, and S. Zhou, Subgroup perfect codes in Cayley graphs, submitted, https://arxiv.org/abs/1904.01858.
- F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North- Holland, Amsterdam, 1977.
- S. Szabó, Factoring finite abelian groups by subsets with maximal span, SIAM J. Discrete Math. 20 (2006) 920-931.
- S. Szabó and A. Sands, Factoring Groups into Subsets, CRC Press, Boca Raton, FL, 2009.
- T. Tamizh Chelvam and S. Mutharasu, Subgroups as efficient dominating sets in Cayley graphs, Discrete Appl. Math. 161 (2013) 1187-1190.
- S. Zhou, Total perfect codes in Cayley graphs, Des. Codes Cryptogr. 81 (2016) 489- 504.
- S. Zhou, Cyclotomic graphs and perfect codes, J. Pure Appl. Algebra 223 (2019) 931-947.