Academia.eduAcademia.edu

Outline

On subgroup perfect codes in Cayley graphs

2020, arXiv (Cornell University)

https://doi.org/10.48550/ARXIV.2006.11104

Abstract

A perfect code in a graph Γ = (V, E) is a subset C of V such that no two vertices in C are adjacent and every vertex in V \ C is adjacent to exactly one vertex in C. A subgroup H of a group G is called a subgroup perfect code of G if there exists a Cayley graph of G which admits H as a perfect code. Equivalently, H is a subgroup perfect code of G if there exists an inverse-closed subset A of G containing the identity element such that (A, H) is a tiling of G in the sense that every element of G can be uniquely expressed as the product of an element of A and an element of H. In this paper we obtain multiple results on subgroup perfect codes of finite groups, including a few necessary and sufficient conditions for a subgroup of a finite group to be a subgroup perfect code, a few results involving 2-subgroups in the study of subgroup perfect codes, and several results on subgroup perfect codes of metabelian groups, generalized dihedral groups, nilpotent groups and 2-groups.

References (27)

  1. E. Bannai, On perfect codes in the Hamming schemes H(n, q) with q arbitrary, J. Combin. Theory Ser. A 23 (1977) 52-67.
  2. E. Bannai, Codes in bipartite distance-regular graphs, J. London Math. Soc. (2) 16 (1977) 197-202.
  3. N. L. Biggs, Perfect codes in graphs, J. Combin. Theory Ser. B 15 (1973) 289-296.
  4. A. E. Brouwer, A. M. Cohen, and A. Neumaier, Distance-regular Graphs, Springer- Verlag, Berlin, 1989.
  5. I. J. Dejter and O. Serra, Efficient dominating sets in Cayley graphs, Discrete Appl. Math. 129 (2003) 319-328.
  6. P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Res. Rep. Suppl., 10, 1973.
  7. Y-P. Deng, Y-Q. Sun, Q. Liu and H.-C. Wang, Efficient dominating sets in circulant graphs, Discrete Math. 340 (2017) 1503-1507.
  8. M. Dinitz, Full rank tilings of finite abelian groups, SIAM J. Discrete Math. 20 (2006) 160-170.
  9. R. Feng, H. Huang, and S. Zhou, Perfect codes in circulant graphs, Discret. Math. 340 (2017) 1522-1527.
  10. P. Hammond and D. H. Smith, Perfect codes in the graphs O k , J. Combin. Theory Ser. B 19 (1975) 239-255.
  11. G. Hajós, Über einfache und mehrfache Bedeckung des n-dimensionalen Raumes mit einem Würfelgitter, Math. Z. 47 (1942) 427-467.
  12. T. W. Haynes, S. T. Hedetniemi and P. Slater, Fundamentals of Domination in Graphs, Marcel Dekker, Inc., New York, 1998.
  13. O. Heden, A survey of perfect codes, Adv. Math. Commun. 2 (2008) 223-247.
  14. P. Horak and D. Kim, 50 years of the Golomb-Welch conjecture, IEEE Trans. Inform. Theory 64 (2018) 3048-3061.
  15. H. Huang, B. Xia, and S. Zhou, Perfect codes in Cayley graphs, SIAM J. Discrete Math. 32 (2018) 548-559.
  16. J. Kratochvíl, Perfect codes over graphs, J. Combin. Theory Ser. B 40 (1986) 224- 228.
  17. H. Kurzweil and B. Stellmacher, The Theory of Finite Groups, An Introduction, Universitext, Springer, New York-Berlin-Heidelberg, 2004.
  18. J. Lee, Independent perfect domination sets in Cayley graphs, J. Graph Theory 37 (2001) 213-219.
  19. H. W. Lenstra, Jr., Two theorems on perfect codes, Discrete Math. 3 (1972) 125-132.
  20. J. H. van Lint, A survey of perfect codes, Rocky Mountain J. Math. 5 (1975) 199-224.
  21. X. Ma, G. L. Walls, K. Wang, and S. Zhou, Subgroup perfect codes in Cayley graphs, submitted, https://arxiv.org/abs/1904.01858.
  22. F. J. MacWilliams and N. J. A. Sloane, The Theory of Error-correcting Codes, North- Holland, Amsterdam, 1977.
  23. S. Szabó, Factoring finite abelian groups by subsets with maximal span, SIAM J. Discrete Math. 20 (2006) 920-931.
  24. S. Szabó and A. Sands, Factoring Groups into Subsets, CRC Press, Boca Raton, FL, 2009.
  25. T. Tamizh Chelvam and S. Mutharasu, Subgroups as efficient dominating sets in Cayley graphs, Discrete Appl. Math. 161 (2013) 1187-1190.
  26. S. Zhou, Total perfect codes in Cayley graphs, Des. Codes Cryptogr. 81 (2016) 489- 504.
  27. S. Zhou, Cyclotomic graphs and perfect codes, J. Pure Appl. Algebra 223 (2019) 931-947.