Academia.eduAcademia.edu

Outline

Upper Bounds for Turán Numbers

1997, Journal of Combinatorial Theory, Series A

https://doi.org/10.1006/JCTA.1996.2739

Abstract

A system of r-element subsets (blocks) of an n-element set X n is called a Tura n (n, k, r)-system if every k-element subset of X n contains at least one of the blocks. The Tura n number T(n, k, r) is the minimum size of such a system. We prove upper estimates: T(n, r+1, r) (1+o(1)

References (16)

  1. D. de Caen, Extension of a theorem of Moon and Moser on complete subgraphs, Ars Combin. 16 (1983), 5 10.
  2. D. de Caen, D. L. Kreher, and J. Wiseman, On constructive upper bounds for Tura n numbers T(n, 2r+1, r), Congr. Numer. 65 (1988), 277 280.
  3. P. Erdo s, On the combinatorial problems I would most like to see solved, Combinatorica 1 (1981), 25 42.
  4. P. Erdo s and L. Lova sz, Problems and results on 3-chromatic hypergraphs and some related questions, in ``Infinite and Finite Sets,'' Colloq. Math. Soc. Ja nos Bolyai, Vol. 10, pp. 609 627, Akad. Kiado , Budapest, 1975.
  5. P. Frankl and V. Ro dl, Lower bounds for Tura n's problem, Graphs Combin. 1 (1985), 213 216.
  6. G. Katona, T. Nemetz, and M. Simonovits, On a graph problem of Tura n, Mat. Lapok 15 (1964), 228 238. [Hungarian]
  7. K. H. Kim and F. W. Roush, On a problem of Tura n, in ``Studies in Pure Mathematics,'' pp. 423 425, Birkha user, BaselÂBoston, 1983.
  8. W. Mantel, Vraagstuk XXVIII, Wiskundige Opgaven met de Oplossingen 10 (1907), 60 61.
  9. J. Scho nheim, On coverings, Pacific J. Math. 14 (1964), 1405 1411.
  10. A. F. Sidorenko, Systems of sets that have the T-property, Moscow Univ. Math. Bull. 36, No. 5 (1981), 22 26.
  11. A. F. Sidorenko, The method of quadratic forms and Tura n's combinatorial problem, Moscow Univ. Math. Bull. 37, No. 1 (1982), 1 5.
  12. A. F. Sidorenko, ``Extremal Constants and Inequalities for Distributions of Sums of Random Vectors,'' Ph.D. thesis, Moscow State University, 1982. [Russian]
  13. A. F. Sidorenko, Exact values of Tura n numbers, Math. Notes 42, No. 5 6 (1987), 913 918.
  14. P. Tura n, Egy gra felme leti sze lso e rte kfeladatro l, Mat. Fiz. Lapok 48 (1941) 3, 436 453.
  15. P. Tura n, Research problems, Maguar Tud. Akad. Mat. Kutato Int. Ko zl. 6 (1961), 417 423.
  16. P. Tura n, Applications of graph theory to geometry and potential theory, in ``Combinatorial Structures and Their Applications,'' pp. 423 434, Gordon 6 Breach, New York, 1970.