Academia.eduAcademia.edu

Outline

Hydrology: Modeling an Uncertainty

https://doi.org/10.13140/2.1.4610.3689

Abstract

Vit Klemeš (1932-2010) wrote: “The unsatisfactory state of hydrology is … the result of the dichotomy between the theoretical recognition of hydrology as a science in its own right and the practical impossibility of studying it as a primary discipline, but only as an appendage of hydraulic engineering, geography, geology, etc. …” (1986) and “… the consequence of the fact that, in the absence of hydrology as a full-fledged science, engineers themselves had to supply the hydrological inputs they needed and they did so by constructing simple empirical models from the data - after all, it was not their business to do 'scientific hydrology'”(1999). These were last century articles; the recent publication, “Joint Editorial – On the Future of Journal Publications in Hydrology” in five international hydrological journals shows the presence of a similar situation now. Two topics considered in the presentation are Logic and Ontology, to present Hydrology in a wider multi-disciplinary ...

References (61)

  1. Beven, K. (2007) Towards integrated environmental models of everywhere: uncertainty, data & modelling as a learning process. Hydrology & Earth System Sciences 11:460-467.
  2. Beven, K., & P. Young (2013) A guide to good practice in modeling semantics for authors & referees. Water Resour. Res., 49:5092-5098.
  3. Blöschl, G., A. Bardossy, D. Koutsoyiannis, Z. W. Kundzewicz, I. Littlewood, A. Montanari, &
  4. H. Savenije (2014) On the future of journal publications in Hydrology. Water Resour. Res. 50:2795-2797.
  5. Bohm, D. (1952) A Suggested Interpretation of the Quantum Theory in terms of 'Hidden' Variables. Parts I & II. Physics Review 85:166-193.
  6. Bohm, D. (1982) Wholeness & the implicate order. Routledge & Kegan Paul, Boston. 224 p.
  7. Brugnach, M., A. Dewulf, C. Pahl-Wostl, & T. Taillieu. (2008) Toward a relational concept of uncertainty: about knowing too little, knowing too differently, & accepting not to know. Ecology & Society 13(2):30.
  8. Delgado, M., M. D. Ruiz, D. Sánchez, & M. A. Vila (2014) Fuzzy quantification: a state of the art. Fuzzy Sets & Systems 242:1-30.
  9. Dubois, D. & H. Prade (1988) Possibility theory. An approach to computerized processing of uncertainty. Plenum Press, New York, New York, USA, 263 p.
  10. Dubois, D. & H. Prade (2010). Formal representations of uncertainty. Chapter 3, in Decision-making Process: Concepts & Methods (Eds Denis Bouyssou, Didier Dubois, Marc Pirlot, Henri Prade), p. 85-156. Willey. Hoboken, NJ.
  11. Efron, B. & D. V. Hinkley (1978) Assessing the Accuracy of the Maximum Likelihood Estimator: Observed Versus Expected Fisher Information. Biometrika 65(3):457-482.
  12. Gleeson, T. & D. Paszkowski (2014) Perceptions of scale in hydrology: what do you mean by regional scale? Hydrological Sciences J. 59(1):99-107.
  13. Gruber, T. R. (1993) A Translation Approach to Portable Ontology Specifications. Knowledge Acquisition 5(2):199-220.
  14. Freshwater: Supply Concerns Continue, & Uncertainties Complicate Planning. GAO-14-430: Published: May 20, 2014. Publicly Released: May 22, 2014.
  15. Klemeš, V. (1976) Geophysical time series & catastrophism, Catastrophist Geology, 1(1):43-48.
  16. Klemeš, V. (1978) Physically based stochastic hydrologic analysis. Advances in Hydroscience (V. T. Chow, editor). Vol. 11. Academic Press, NY, pp. 286-356.
  17. Klemeš, V. (1982) Empirical & causal models in hydrology. In: Scientific Basis of Water Resource Management. National Academy of Sciences, Washington, DC., pp. 391-403.
  18. Klemeš, V. (1983) Hydrological uncertainty in water management context. In "Scientific Procedures Applied to the Planning, Design & Management of Water Resources Systems" Proceedings of the Hamburg Symposium, August 1983. lAHS. Publ. 147:175-186.
  19. Klemeš, V. (1986) "Dilettantism in hydrology: Transition or destiny?" Water Resour. Res., 22(9):1775-1885.
  20. Klemeš, V. (1989) ''The improbable probabilities of extreme floods & droughts.'' Hydrology & disasters, O. Starosolszky & O. M. Melder, eds., James & James, London, 43-51.
  21. Klemeš, V. (1999) Keeping techniques, methods & models in perspective. Journal of Water Resources Planning & Management -ASCE, 125 (4):181-185, Victoria BC, Canada.
  22. Klemeš, V. (2007) Association Lecture by the President of IAHS in 1987-1991. 20 years later: What has changed -& what hasn't. The IAHS General Assembly in Perugia, Italy, 9 July 2007, 42 p. 22. Koutsoyiannis, D. (2011) Hurst-Kolmogorov dynamics & uncertainty, Journal of the American Water Resources Association 47(3):481-495.
  23. Koutsoyiannis, D. (2013) Hydrology & Change, Hydrological Sciences Journal 58(6):1177-1197.
  24. Krcho, J. (1978) The Spatial Organization of the Physical-Geographic Sphere as a Cybernetic System Expressed by Means of Measure of Entropy: Acta Facultatis Rerum Naturaium Universitatis Commenianae, Bratislava. Ceographica 16:57-147.
  25. Leopold, L. B. (1977) A reverence for rivers. Geology 5:429-430.
  26. Liberman, A. A. & Shmagin B. A. (1984) The case of research latent periodicity of groundwater flow. Moscow University Geology Bulletin, series 4, 1988, 6:85-88. (In Russian).
  27. Lindley, D. (2000) The Philosophy of Statistic. The Statistisian 49:293-337.
  28. Markonis, Y., & D. Koutsoyiannis, (2013) Climatic variability over time scales spanning nine orders of magnitude: Connecting Milankovitch cycles with Hurst-Kolmogorov dynamics. Surveys in Geophysics 34(2):181-207.
  29. Matalas, N. (2012) Comment on the Announced Death of Stationarity. J. Water Resour. Plann. Manage., 138(4):311-312.
  30. McDonald, R. I., K. Weber, J. Padowski, M. Flörke, C. Schneider, P. A. Green, T. Gleeson, S. Eckman, B. Lehner, D. Balk, T. Boucher, G. Grill, & M. Montgomery (2014) Water on an urban planet: Urbanization & the reach of urban water infrastructure. Global Environ. Change 27:96-105.
  31. Minsky, M. L. (1965, 1968, 1995) Matter, Mind & Models. Proc. International Federation of Information Processing Congress 1965, vol. 1: 45-49. Reprinted: "Semantic Information processing," (Marvin Minsky, Ed.) MIT Press, 1968.
  32. Minsky, M. (1975) A framework for representing knowledge. Pages 211-277 in P. H. Winston, editor. The psychology of computer vision. MC-Graw-Hill, New York, New York, USA.
  33. Montanari, A., G. Blöschl, X. Cai, D. S. Mackay, A. M. Michalak, H. Rajaram, & G. Sander (2013), Editorial : Toward 50 years of Water Resources Research, Water Resour. Res. 49:7841-7842.
  34. Mooers, H., R. Kanivetsky, J. Nieber, H. Peterson, C. Johnston, & B. Shmagin (2009) Geological Controls on Water Resource Variability in Minnesota, USA. Available from Nature Precedings <http://dx.doi.org/10.1038/npre.2009.3957.1>
  35. Nalimov, V. V. (1981) In the labyrinths of language: A mathematician's journey, Philadelphia, Pa., ISI Press, 246 p. 36. Newman, A. J., M. P. Clark, K. Sampson, A. Wood, L. E. Hay, A. Bock, R. Viger, D. Blodgett, L. Brekke, J. R. Arnold, T. Hopson, & Q. Duan (2014) Development of a large-sample watershed-scale hydrometeorological dataset for the contiguous USA: dataset characteristics & assessment of regional variability in hydrologic model performance. HESSD 11:5599-5631.
  36. Peterson, H. M., J. L. Nieber, R. Kanivetsky & B. Shmagin (2014) Regionalization of landscape characteristics to map hydrologic variables. J. of Hydroinformatics 16(3):633-648.
  37. Peterson, H. M., J. L. Nieber, R. Kanivetsky & B. Shmagin (2013) Water Resources Sustainability Indicator: Application of the Watershed Characteristics Approach. Water Resour. Manag. 27:1221-1234.
  38. Polanyi, M. (1958) Personal Knowledge, Routledge, London, & University of Chicago Press, Chicago. 428 p. 40. Polanyi, M. (1964) Science, Faith & Society, 2nd ed., University of Chicago Press, Chicago. 273 p. 41. Polanyi, M. (1966) The Tacit Dimension, University of Chicago Press: Chicago, 128 p. 42. Poliakov, A. S., V. N. Sokolov & B. A. Shmagin. (1988) Probabilistic Models for V. I. Vernadsky's Geospheres. Moscow University Geology Bulletin, series 4, 6:30-41. (In Russian).
  39. Salas, J.D., J. W. Delleur, V. Yevjevich, & W. L. Lane 1980, Applied Modeling of Hydrologic Time Series. Water Resources Publication, 484 pages 44. Schmandt, B., Jacobsen, S. D., Becker, T. W., Liu, Z., & Dueker, K. G. (2014) Dehydration melting at the top of the lower mantle. Science, 334:1265-1268.
  40. Searle, J. R., (1972) Chomsky's Revolution in Linguistics. The New York Review of Books, June 29, 1972. 46. Shannon, C. E. (1948) A Mathematical Theory of Communication. The Bell System Technical Journal. 27:379-423, 623-656, July, October 1948.
  41. Shmagin, B. A. (1997) The use of a runoff hydrosphere system's structure model as a basis of monitoring water resources. Third USA/CIS Joint Conference on Environmental Hydrology & Hydrogeology - Water: Sustaining a Critical Resource. A selection of papers presented at the Conference held in Tashkent, Uzbekistan, Sept. 22-27, 1996, (ed. J. D. Powell), pp. 107-111.
  42. Shmagin B. A. (2009) Precipitation in Aberdeen, SD: data analysis approach. Proceedings of SD Academy of Science 88:67-79.
  43. Shmagin, B. (2011a) Missouri River Watershed: the Object for Hydrological Study & the Uncertainty of Models. Available from Nature Precedings < http://dx.doi.org/10.1038/npre.2011.6537.1 > 50. Shmagin, B. (2011b). The Issue of Uncertainty for the River Watershed: Data Analysis of Scaled Space & Time Variability. Available from Nature Precedings < http://dx.doi.org/10.1038/npre.2011.6008.1 > 51. Shmagin, B. (2012) The Issue of Uncertainty of Hydrologic Events in the Missouri River Watershed & the Property of Coordinate System in Use. // Proceedings of the South Dakota Academy of Science 91:253-256.
  44. Shmagin, B. & D. Chen (2006). Understanding & mapping water resources by multidimensional statistics & fuzzy logic: Missouri River Basin case. 2006 Western SD hydrology conference. April 18, 2006. Rapid City, SD. Program & Abstracts, p. 28. Available from Nature Precedings < http://precedings.nature.com/documents/1071/version/1 > 53. Shmagin, B.A., & C. A. Johnston (2004).The hydroclimatology of the central territory of conterminous U.S. & stream flow regime in upper Missouri River basin. Abstract. Proceedings of the South Dakota Academy of Science 83: 291-292.
  45. Shmagin, B., Johnston, C., & Bridgham, S. The spatial temporal regime of stream flow of the conterminous U.S. in connection with indices of global atmospheric circulation. Eos Trans. AGU, 85(17), Jt.
  46. Assem. Suppl., Abstract H33A-06, American Geophysical Union Joint Assembly, Montreal Canada, May. Available from Nature Precedings <http://dx.doi.org/10.1038/npre.2007.1382.1> (2007) 55. Shmagin, B. & R. Kanivetsky (2006). Regional Hydrology: Tools vs. Ideas. In: "Coastal Hydrology & Processes". Proceedings of the AIH 25th Anniversary Meeting & International Conference on "Challenges in Coastal Hydrology & Water Quality". Water Resources Publications, LLC. (Eds: Vijay P. Singh & Y. Jun Xu). Chapter 15, pp. 183-196.
  47. Shmagin B. & D. Todey (2007). South Dakota Diversity of Temperature: Pictures from Statistical Analysis. Proceedings of SD Academy of Science 86:115-158.
  48. Shmagin, B. & M. Trizna (1992). A Long-Term Prognosis of Average Annual Flows of Danube River in Orsova Station. Acta Faculitatis Rerum Naturalium Universitatis Comenianae. Bratislava. Geographica 33:233- 243.
  49. Singh, V., Byrd, A., & Cui, H. (2014). "Flow Duration Curve Using Entropy Theory." J. Hydrol. Eng., 19(7), 1340-1348.
  50. Sivapalan, M., Savenije, H. H. G., & Blöschl, G. (2012). Socio-hydrology: A new science of people & water. Hydrol. Process. 26(8):1270-1276.
  51. Slack, J. R., & Landwehr, J. M. (1992) Hydro-Climatic Data Network (HCDN): A U.S. Geological Survey streamflow data set for the United States for the study of climate variations, 1874-1988, U.S. Geol. Surv. Open File Rep. 92-129.
  52. UNESCO (1964) International Hydrological Decade. Intergovernmental Meeting of Experts. Paris. (unesdoc.unesco.org/images/0001/000170/017099EB.pdf)
  53. Vapnik, V. (1982) Estimation of Dependencies Based on Empirical Data. Springer, 506 p. Second edition (2006). Estimation of Dependencies Based on Empirical Data; Empirical inference science: afterword of 2006. New York, N.Y. Springer.
  54. Vapnik, V. (2006) Empirical Inference Science. Video: "Foundations of Statistical Learning Theory: Empirical Inference in high-dimension spaces". Léon Bottou & Vladimir Vapnik. Published on the Web: Dec. 3, 2007, recorded: September 2007. (http://videolectures.net/mmdss07_bottou_fslt/). Slide show for the lecture: http://www1.cs.columbia.edu/~jebara/6998/NSF-2006.pdf.
  55. Vernadsky, V. I. (1998) The Biosphere, A Peter A. Nevraumont Book, N.Y.: pp. 41-150.
  56. Weaver, W. (1949) Recent contributions to the mathematical theory of communication in Weaver, W. & C. E. Shannon. The Mathematical Theory of Communication, Urbana, Illinois: University of Illinois Press, 1949, pp. 1-28.
  57. Wilson, D. S. (2002) Darwin's Cathedral: Evolution, Religion, & the Nature of Society, University of Chicago Press. 268 p. 67. Wittgenstein, L. (1922) Tractatus Logico-Philosophicus. First published by Kegan Paul (London), 1922. 68. Zadeh, L. A. (1975). The concept of a linguistic variable & its application to approximate reasoning, I-III, Information Sciences 8:199-251, 9:301-357, 9:43-80.
  58. Zadeh, L. A. (2005). Toward a generalized theory of uncertainty (GTU) -an outline. Information Sciences, 172(1-2), 1-40.
  59. Zaltsberg, E. 2013. Development of regional hydrogeological mapping in Russia. Hydrogeology Journal 21: 525-528.
  60. Zachos J, Pagani M, Sloan L, Thomas E, Billups K (2001) Trends, rhythms, & aberrations in global climate 65 Ma to present. Science 292:686-693. Words Clouds (Math Models)
  61. Five models represent the Abstract (left), List of References (l. center), Text of the Poster (center & r. center) & Quotations (right) (images created on Wordel.com)