Academia.eduAcademia.edu

Outline

Preemptive scheduling in the presence of transportation times

2009, Computers & Operations Research

https://doi.org/10.1016/J.COR.2008.09.006

Abstract

In this paper, we consider the problem of scheduling n independent jobs preemptively on m identical parallel machines, to minimize the total completion time (makespan). Each job J i (i = 1, n) has a processing time p i and the transportation of an interrupted job from a machine M j to another machine M j requires d jj units of time. We propose a linear programming formulation in real and binary decision variables and we prove that the problem is NP-hard. Some subproblems are analyzed and solved by polynomial algorithms. Finally we present some heuristics and give some lower bounds of the makespan.

References (13)

  1. Fishkin AV, Jansen K, Sevastyanov SV, Sitters R. Preemptive scheduling of independent jobs on identical parallel machines subject to migration delays. Lecture notes in computer science, vol. 3669; 2005. p. 580-91.
  2. Baker KR. Introduction to sequencing and scheduling. New York: Wiley; 1974.
  3. Blazewicz J. Selected topics in scheduling theory. Annals of Discrete Mathematics 1987;31:1-60.
  4. Blazewicz J, Ecker KH, Pesch E, Schmidt G, Weglarz J. Scheduling computer and manufacturing processes. Berlin: Springer; 1996.
  5. Blazewicz J, Ecker KH, Schmidt G, Weglarz J. Scheduling in computer and manufacturing systems. Berlin: Springer-Lehrbuch; 1994.
  6. Brucker P. Scheduling algorithms. Berlin: Springer; 1995.
  7. Brucker P, Knust S. Complexity results of scheduling problems, page web, 2007 http://www.mathematik.uni-osnabrueck.de/research/OR/class/ .
  8. Berit J. Scheduling parallel jobs to minimize the makespan. Journal of Scheduling 2006;9:433-52.
  9. Chu C, Yalaoui F. An efficient heuristic approach for parallel machine scheduling with job splitting and sequence dependent setup times. IIE Transactions 2003;35:183-90.
  10. Boustta M. Minimisation du temps de fabrication sur une machine à injection avec réglages multiples, Thèse, Université Laval, Québec; 2003.
  11. Adjallah KH, Bettayeb B, Kacem I. Ordonnancement sur machines parallèles identiques avec temps de préparation par famille: application à la gestion des tâches de maintenance préventive. 6e Conférence Francophone de MOdélisation et SIMulation (MOSIM'06), Rabat, 2006.
  12. Jansen K, Mastrolilli M, Solis-Oba R. Approximation algorithms for flexible job shop problems. International Journal of Foundations of Computer Science 2005;16(2):361-79.
  13. Garey MR, Johnson DS. Computers and intractability: a guide to the theory of NP-completeness. San Francisco: W.H. Freeman and Company; 1979.