Academia.eduAcademia.edu

Outline

Transformations of Spherical Blocks

2013, HAL (Le Centre pour la Communication Scientifique Directe)

Abstract

We further explore the correspondence between N = 2 supersymmetric SU (2) gauge theory with four flavors on-deformed backgrounds and conformal field theory, with an emphasis on the-expansion of the partition function natural from a topological string theory point of view. Solving an appropriate null vector decoupling equation in the semiclassical limit allows us to express the instanton partition function as a series in quasimodular forms of the group Γ(2), with the expected symmetry W (D 4) S 3. In the presence of an elementary surface operator, this symmetry is enhanced to an action of W (D (1)

References (39)

  1. L. F. Alday, D. Gaiotto, and Y. Tachikawa, "Liouville Correlation Functions from Four-dimensional Gauge Theories," Lett.Math.Phys. 91 (2010) 167-197, arXiv:0906.3219 [hep-th].
  2. V. Fateev and A. Litvinov, "On AGT conjecture," JHEP 1002 (2010) 014, arXiv:0912.0504 [hep-th].
  3. A. Marshakov, A. Mironov, and A. Morozov, "On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles," J.Geom.Phys. 61 (2011) 1203-1222, arXiv:1011.4491 [hep-th].
  4. A.-K. Kashani-Poor and J. Troost, "The toroidal block and the genus expansion," JHEP 1303 (2013) 133, arXiv:1212.0722 [hep-th].
  5. A. Zamolodchikov, "Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model," Sov. Phys. JETP 63 (1986) 1061.
  6. N. Seiberg and E. Witten, "Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD," Nucl.Phys. B431 (1994) 484-550, arXiv:hep-th/9408099 [hep-th].
  7. G. Giribet, "On AGT description of N=2 SCFT with N(f) = 4," JHEP 1001 (2010) 097, arXiv:0912.1930 [hep-th].
  8. A. Zamolodchikov and V. Fateev, "Operator Algebra and Correlation Functions in the Two-Dimensional Wess-Zumino SU(2) x SU(2) Chiral Model," Sov.J.Nucl.Phys. 43 (1986) 657-664.
  9. V. Fateev and A. Litvinov, "Multipoint correlation functions in Liouville field theory and minimal Liouville gravity," Theor.Math.Phys. 154 (2008) 454-472, arXiv:0707.1664 [hep-th].
  10. L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, "Loop and surface operators in N=2 gauge theory and Liouville modular geometry," JHEP 1001 (2010) 113, arXiv:0909.0945 [hep-th].
  11. A. Levin and Olshanetsky, "Painlevé-Calogero correspondence," alg-geom/9706012.
  12. H. Nagoya, "A quantization of the sixth Painlevé equation," Non-commutativity and Singularities, Adv. Stud. Pure Math. 55 (2009) 291-298.
  13. A. Zabrodin and A. Zotov, "Quantum Painleve-Calogero Correspondence," J.Math.Phys. 53 (2012) 073507, arXiv:1107.5672 [math-ph].
  14. P. Painlevé, "Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme," Acta Math. 25 (1902) 185.
  15. R. Fuchs, "Uber linear homogene Differentialgleichungen zweiter Ordnung mit im endlich gelegene wesentlich singularen Stellen.," Math. Ann. 63 (1907) 301-321.
  16. B. Gambier, "Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes," CR Ac. Sci. Paris 142 (1906) 266-269.
  17. H. Nagoya, "Realizations of affine Weyl group symmetries on the quantum Painleve equations by fractional calculus," Lett.Math.Phys. 102 (2012) 297-321.
  18. N. A. Nekrasov, "Seiberg-Witten prepotential from instanton counting," Adv.Theor.Math.Phys. 7 (2004) 831-864, arXiv:hep-th/0206161 [hep-th].
  19. L. Schlesinger, "Uber eine Klasse von Differentialsystemen beliebliger Ordnumg mit festen kritischer Punkten," J. fUr Math. 141 (1912) 96-145.
  20. R. Garnier, "Sur des équations différentielles du troisième ordre dont l'intégrale est uniform et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses point critiques fixés," Ann. Sci. de l'ENS 29 (1912) 1-126.
  21. R. Garnier, "Sur une classe de systèmes differentiels abéliens deduits de la théorie des équations linéaires," Rend. Circ. Mat. Palermo 43 (1918-19) 155-191.
  22. M. Jimbo and T. Miwa, "Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II," Physica D 2 (1981) 407-448.
  23. K. Okamoto, "Studies on the Painlevé equations. I. Sixth Painlevé equation," Ann. Mat. Pura Appl. (4) 146 (1987) 337-381.
  24. H. Nagoya and Y. Yamada, "Symmetries of quantum Lax equations for the Painlevé equations," arXiv:1206.5963 [math-ph].
  25. P. Boalch, "Six results on Painlevé VI," Société Mathématique de France, Séminaires et congrès 14 (2006) 1-20.
  26. A. Zamolodchikov, "Conformal symmetry in two-dimensional space : recursion representation of the conformal block," Theor. Math. Phys. 73 (1987) 1088.
  27. Y. Manin, "Sixth Painlevé Equation, Universal Elliptic Curve, and Mirror of P 2 ," AMS Transl. (2) 186 (1998) 131-151.
  28. M. Olshanetsky and A. Perelomov, "Classical integrable finite dimensional systems related to Lie algebras," Phys.Rept. 71 (1981) 313.
  29. V. Inozemtsev, "Lax Representation with Spectral Parameter on a Torus for Particle Systems," Lett.Math.Phys. 17 (1989) 11-17.
  30. M. Gaudin, "Diagonalisation d'une classe d'Hamiltoniens de spin," J. Physique 37 (1976) 1087-1098.
  31. A. Zotov, "Elliptic Linear Problem for Calogero-Inozemtsev Model and Painleve VI Equation," Lett.Math.Phys. 67 (2004) 153-165.
  32. K. Takasaki, "Painleve-Calogero correspondence revisited," J.Math.Phys. 42 (2001) 1443-1473, arXiv:math/0004118 [math-qa].
  33. V. A. Fateev, A. Litvinov, A. Neveu, and E. Onofri, "Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks," J.Phys. A42 (2009) 304011, arXiv:0902.1331 [hep-th].
  34. M. Kaneko and D. Zagier, "A generalized Jacobi theta function and quasimodular forms in The Moduli Space of Curves, Eds: Dijkgraaf, Faber, vanderGeer. Birkhuser,".
  35. M.-x. Huang, A.-K. Kashani-Poor, and A. Klemm, "The Omega deformed B-model for rigid N=2 theories," arXiv:1109.5728 [hep-th].
  36. A. B. Zamolodchikov and A. B. Zamolodchikov, "Conformal field theory and 2-D critical phenomena. 3. Conformal bootstrap and degenerate representations of conformal algebra," ITEP-90-31 (1990) .
  37. A. Zamolodchikov, "Conformal symmetry in two dimensions : an explicit recurrence formula for the conformal partial wave amplitude," Commun.Math.Phys. 96 (1984) 419-422.
  38. M. Billo, M. Frau, L. Gallot, A. Lerda, and I. Pesando, "Deformed N=2 theories, generalized recursion relations and S-duality," JHEP 1304 (2013) 039, arXiv:1302.0686 [hep-th].
  39. M. Billo, M. Frau, L. Gallot, and A. Lerda, "The exact 8d chiral ring from 4d recursion relations," JHEP 1111 (2011) 077, arXiv:1107.3691 [hep-th].