Transformations of Spherical Blocks
2013, HAL (Le Centre pour la Communication Scientifique Directe)
Abstract
We further explore the correspondence between N = 2 supersymmetric SU (2) gauge theory with four flavors on-deformed backgrounds and conformal field theory, with an emphasis on the-expansion of the partition function natural from a topological string theory point of view. Solving an appropriate null vector decoupling equation in the semiclassical limit allows us to express the instanton partition function as a series in quasimodular forms of the group Γ(2), with the expected symmetry W (D 4) S 3. In the presence of an elementary surface operator, this symmetry is enhanced to an action of W (D (1)
References (39)
- L. F. Alday, D. Gaiotto, and Y. Tachikawa, "Liouville Correlation Functions from Four-dimensional Gauge Theories," Lett.Math.Phys. 91 (2010) 167-197, arXiv:0906.3219 [hep-th].
- V. Fateev and A. Litvinov, "On AGT conjecture," JHEP 1002 (2010) 014, arXiv:0912.0504 [hep-th].
- A. Marshakov, A. Mironov, and A. Morozov, "On AGT Relations with Surface Operator Insertion and Stationary Limit of Beta-Ensembles," J.Geom.Phys. 61 (2011) 1203-1222, arXiv:1011.4491 [hep-th].
- A.-K. Kashani-Poor and J. Troost, "The toroidal block and the genus expansion," JHEP 1303 (2013) 133, arXiv:1212.0722 [hep-th].
- A. Zamolodchikov, "Two-dimensional conformal symmetry and critical four-spin correlation functions in the Ashkin-Teller model," Sov. Phys. JETP 63 (1986) 1061.
- N. Seiberg and E. Witten, "Monopoles, duality and chiral symmetry breaking in N=2 supersymmetric QCD," Nucl.Phys. B431 (1994) 484-550, arXiv:hep-th/9408099 [hep-th].
- G. Giribet, "On AGT description of N=2 SCFT with N(f) = 4," JHEP 1001 (2010) 097, arXiv:0912.1930 [hep-th].
- A. Zamolodchikov and V. Fateev, "Operator Algebra and Correlation Functions in the Two-Dimensional Wess-Zumino SU(2) x SU(2) Chiral Model," Sov.J.Nucl.Phys. 43 (1986) 657-664.
- V. Fateev and A. Litvinov, "Multipoint correlation functions in Liouville field theory and minimal Liouville gravity," Theor.Math.Phys. 154 (2008) 454-472, arXiv:0707.1664 [hep-th].
- L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, "Loop and surface operators in N=2 gauge theory and Liouville modular geometry," JHEP 1001 (2010) 113, arXiv:0909.0945 [hep-th].
- A. Levin and Olshanetsky, "Painlevé-Calogero correspondence," alg-geom/9706012.
- H. Nagoya, "A quantization of the sixth Painlevé equation," Non-commutativity and Singularities, Adv. Stud. Pure Math. 55 (2009) 291-298.
- A. Zabrodin and A. Zotov, "Quantum Painleve-Calogero Correspondence," J.Math.Phys. 53 (2012) 073507, arXiv:1107.5672 [math-ph].
- P. Painlevé, "Sur les équations différentielles du second ordre et d'ordre supérieur dont l'intégrale générale est uniforme," Acta Math. 25 (1902) 185.
- R. Fuchs, "Uber linear homogene Differentialgleichungen zweiter Ordnung mit im endlich gelegene wesentlich singularen Stellen.," Math. Ann. 63 (1907) 301-321.
- B. Gambier, "Sur les équations différentielles du second ordre et du premier degré dont l'intégrale générale est à points critiques fixes," CR Ac. Sci. Paris 142 (1906) 266-269.
- H. Nagoya, "Realizations of affine Weyl group symmetries on the quantum Painleve equations by fractional calculus," Lett.Math.Phys. 102 (2012) 297-321.
- N. A. Nekrasov, "Seiberg-Witten prepotential from instanton counting," Adv.Theor.Math.Phys. 7 (2004) 831-864, arXiv:hep-th/0206161 [hep-th].
- L. Schlesinger, "Uber eine Klasse von Differentialsystemen beliebliger Ordnumg mit festen kritischer Punkten," J. fUr Math. 141 (1912) 96-145.
- R. Garnier, "Sur des équations différentielles du troisième ordre dont l'intégrale est uniform et sur une classe d'équations nouvelles d'ordre supérieur dont l'intégrale générale a ses point critiques fixés," Ann. Sci. de l'ENS 29 (1912) 1-126.
- R. Garnier, "Sur une classe de systèmes differentiels abéliens deduits de la théorie des équations linéaires," Rend. Circ. Mat. Palermo 43 (1918-19) 155-191.
- M. Jimbo and T. Miwa, "Monodromy perserving deformation of linear ordinary differential equations with rational coefficients. II," Physica D 2 (1981) 407-448.
- K. Okamoto, "Studies on the Painlevé equations. I. Sixth Painlevé equation," Ann. Mat. Pura Appl. (4) 146 (1987) 337-381.
- H. Nagoya and Y. Yamada, "Symmetries of quantum Lax equations for the Painlevé equations," arXiv:1206.5963 [math-ph].
- P. Boalch, "Six results on Painlevé VI," Société Mathématique de France, Séminaires et congrès 14 (2006) 1-20.
- A. Zamolodchikov, "Conformal symmetry in two-dimensional space : recursion representation of the conformal block," Theor. Math. Phys. 73 (1987) 1088.
- Y. Manin, "Sixth Painlevé Equation, Universal Elliptic Curve, and Mirror of P 2 ," AMS Transl. (2) 186 (1998) 131-151.
- M. Olshanetsky and A. Perelomov, "Classical integrable finite dimensional systems related to Lie algebras," Phys.Rept. 71 (1981) 313.
- V. Inozemtsev, "Lax Representation with Spectral Parameter on a Torus for Particle Systems," Lett.Math.Phys. 17 (1989) 11-17.
- M. Gaudin, "Diagonalisation d'une classe d'Hamiltoniens de spin," J. Physique 37 (1976) 1087-1098.
- A. Zotov, "Elliptic Linear Problem for Calogero-Inozemtsev Model and Painleve VI Equation," Lett.Math.Phys. 67 (2004) 153-165.
- K. Takasaki, "Painleve-Calogero correspondence revisited," J.Math.Phys. 42 (2001) 1443-1473, arXiv:math/0004118 [math-qa].
- V. A. Fateev, A. Litvinov, A. Neveu, and E. Onofri, "Differential equation for four-point correlation function in Liouville field theory and elliptic four-point conformal blocks," J.Phys. A42 (2009) 304011, arXiv:0902.1331 [hep-th].
- M. Kaneko and D. Zagier, "A generalized Jacobi theta function and quasimodular forms in The Moduli Space of Curves, Eds: Dijkgraaf, Faber, vanderGeer. Birkhuser,".
- M.-x. Huang, A.-K. Kashani-Poor, and A. Klemm, "The Omega deformed B-model for rigid N=2 theories," arXiv:1109.5728 [hep-th].
- A. B. Zamolodchikov and A. B. Zamolodchikov, "Conformal field theory and 2-D critical phenomena. 3. Conformal bootstrap and degenerate representations of conformal algebra," ITEP-90-31 (1990) .
- A. Zamolodchikov, "Conformal symmetry in two dimensions : an explicit recurrence formula for the conformal partial wave amplitude," Commun.Math.Phys. 96 (1984) 419-422.
- M. Billo, M. Frau, L. Gallot, A. Lerda, and I. Pesando, "Deformed N=2 theories, generalized recursion relations and S-duality," JHEP 1304 (2013) 039, arXiv:1302.0686 [hep-th].
- M. Billo, M. Frau, L. Gallot, and A. Lerda, "The exact 8d chiral ring from 4d recursion relations," JHEP 1111 (2011) 077, arXiv:1107.3691 [hep-th].