The PLS Agent – Agent Behavior Validation by Partial Least Squares
Abstract
Agent-based modeling is widely applied in the social sciences. However, the validation of agent behavior is challenging and identified as one of the shortcomings in the field. Methods are required to establish empirical links and support the implementation of valid agent models. This paper contributes to this, by introducing the PLS agent concept. This approach shows a way to transfer results about causalities and decision criteria from empirical surveys into an agent-based decision model, through processing the output of a PLS-SEM model. This should simplify and foster the use of empirical results in agent-based simulation and support collaborative studies over the disciplines.
References (38)
- Beebe, K. R., Pell, R. J., & Seasholtz, M. B. (1998). Chemometrics: a practical guide.
- Bollen, K. A. (1989): Structural equations with latent variables; New York et al. Brenner, T. (2006). Agent learning representation: advice on modelling economic learning. Handbook of computational economics, 2, 895-947
- Cassel, C., Hackl, P., & Westlund, A. H. (1999). Robustness of partial least- squares method for estimating latent variable quality structures. Journal of applied statistics, 26(4), 435-446.
- Davis FD, Bagozzi RP, Warshaw PR (1989) User acceptance of computer technology: a comparison of two theoretical models. Management Science 35(8):982-1003
- Diamantopoulos, A., & Winklhofer, H. M. (2001). Index construction with formative indicators: an alternative to scale development. Journal of Marketing research, 38(2), 269-277.
- Diamantopoulos, A., Riefler, P., & Roth, K. P. (2008). Advancing formative measurement models. Journal of Business Research, 61(12), 1203-1218.
- Fagiolo G, Birchenhall C, Windrum P (2007) Empirical validation in agent- based models: Introduction to the special issue. Computational Economics 30(3):189-194
- Fornell, C., & Bookstein, F. L. (1982). Two structural equation models: LISREL and PLS applied to consumer exit-voice theory. Journal of Marketing Research (JMR), 19(4).
- Gilbert N (2004) Agent-based social simulation: dealing with complexity. The Complex Systems Network of Excellence 9(25):1-14
- Gilbert N (2008) Agent-based models. Quantitative applications in the social sciences, vol 153. Sage, Los Angeles, California
- Haenlein, M., & Kaplan, A. M. (2004). A beginner's guide to partial least squares analysis. Understanding statistics, 3(4), 283-297.
- Miguel, Amblard, Barceló & Madella (eds.) Advances in Computational Social Science and Social Simulation Barcelona: Autònoma University of Barcelona, 2014, DDD repository <http://ddd.uab.cat/record/125597>
- Hair, J. F., Ringle, C. M., & Sarstedt, M. (2011). PLS-SEM: Indeed a Silver Bullet. Journal of Marketing Theory and Practice, 19(2), 139-151.
- Heath B, Hill R, Ciarallo F (2009) A survey of agent-based modeling practices (January 1998 to July 2008). Journal of Artificial Societies and Social Simulation 12(4):9
- Henseler, J., & Fassott, G. (2010). Testing moderating effects in PLS path models: An illustration of available procedures. In Handbook of partial least squares (pp. 713-735). Springer Berlin Heidelberg.
- Holland JH, Booker LB, Colombetti M, Dorigo M, Goldberg DE, Forrest S, Riolo RL, Smith RE, Lanzi PL, Stolzmann W (2000) What is a learning classifier system? In: Learning Classifier Systems. Springer, pp 3-32
- Iffländer, K., Levsen, N., Lorscheid, I., Pakur, S., Wellner, K., Herstatt, C., ...
- & Ringle, C. M. (2012). Innoage: Innovation and Product Development for Aging Users. Hamburg University of Technology (TUHH), Management@ TUHH Research Paper Series, (6).
- Jarvis, C. B., MacKenzie, S. B., & Podsakoff, P. M. (2003). A critical review of construct indicators and measurement model misspecification in marketing and consumer research. Journal of consumer research, 30(2), 199-218.
- Jöreskog, K. G., & van Thillo, M. (1973). Lisrel: A General Computer Program for Estimating a Linear Struc-Tural Equation System.
- Jöreskog, K. G. (1978). Structural analysis of covariance and correlation matrices. Psychometrika, 43(4), 443-477.
- Jöreskog, K. G., & Sörbom, D. (1982). Recent developments in structural equation modeling. Journal of Marketing Research (JMR), 19(4).
- Joreskog, K. G., & Wold, H. (1982). Contributions to Economic Analysis- Systems Under Indirect Observation-Causality-Structure-Prediction. North Holland. Klügl F (ed) (2008) A validation methodology for agent-based simulations. ACM Kocyigit O, Ringle CM (2011) The impact of brand confusion on sustainable brand satisfaction and private label proneness. A subtle decay of brand equity. The Journal of Brand Management: An International Journal 19(3):195-212
- Law AM (2007) Simulation modeling and analysis, 4. ed., internat. ed. McGraw-Hill series in industrial engineering and management science. McGraw-Hill, Boston, Mass ohm ller, .-B. (1989): Latent variable path modeling with partial least squares; Heidelberg.
- Macal CM, North MJ (2010) Tutorial on agent-based modelling and simulation. Journal of Simulation 4(3):151-162
- Macy MW, Willer R (2002) From factors to actors: computational sociology and agent-based modeling. Annual Review of Sociology Mooi, E., & Sarstedt, M. (2011). A concise guide to market research: The process, data, and methods using IBM SPSS statistics. Springer.
- Pakur, S (forthcoming) "Aging Users Technology and Innovation Acceptance and Satisfaction" PhD thesis, Hamburg University of Technology Reinartz, W., Haenlein, M., & Henseler, J. (2009). An empirical comparison of the efficacy of covariance-based and variance-based SEM. International Journal of research in Marketing, 26(4), 332-344.
- Ringle, C. M., Götz, O., Wetzels, M., & Wilson, B. (2009). On the use of formative measurement specifications in structural equation modeling: A Monte Carlo simulation study to compare covariance-based and partial least squares model estimation methodologies.
- Rogers EM (1983) Diffusion of innovations, 3. ed. Free Press, New York Rogers EM (2003) Diffusion of innovations, 5. ed., Free Press trade paperback ed. Free Press, New York, NY Sarstedt, M., Henseler, J., & Ringle, C. M. (2011). Multigroup analysis in partial least squares (PLS) path modeling: alternative methods and empirical results. Advances in International Marketing, 22, 195-218.
- Sheth JN, Newman BI, Gross BL (1991) Why we buy what we buy: a theory of consumption values. Journal of Business Research 22(2):159-170
- Tenenhaus, M., & Hanafi, M. (2010). A bridge between PLS path modeling and multi-block data analysis. In Handbook of Partial Least Squares (pp. 99-123). Springer Berlin Heidelberg. Tesfatsion L (ed) (2006) Handbook of Computational Economics -Vol. 2. Agent-based computational economics. Elsevier, Amsterdam u.a
- Venkatesh V, Morris MG, Davis GB, Davis FD (2003) User acceptance of information technology: Toward a unified view. MIS Quarterly:425-478
- Venkatesh, V., & Bala, H. (2008). Technology acceptance model 3 and a research agenda on interventions. Decision sciences, 39(2), 273-315.
- Venkatesh, V., Thong, J., & Xu, X. (2012). Consumer acceptance and use of information technology: extending the unified theory of acceptance and use of technology. MIS quarterly, 36(1), 157-178.
- Windrum P, Fagiolo G, Moneta A (2007) Empirical validation of agent- based models: Alternatives and prospects. Journal of Artificial Societies and Social Simulation 10(2):8
- Wold, H. (1975). Soft modeling by latent variables: the nonlinear iterative partial least squares approach. Perspectives in probability and statistics, papers in honour of MS Bartlett, 520-540.
- Wold, H. (1982): Models for knowledge, in: Gani, J. (Hrsg.), The making of statisticians, London, S. 190 ff.
- Wu, K., Zhao, Y., Zhu, Q., Tan, X., & Zheng, H. (2011). A meta-analysis of the impact of trust on technology acceptance model: Investigation of moderating influence of subject and context type. International Journal of Information Management, 31(6), 572-581.