Nonuniform Defocus Removal for Image Classification
2021, ArXiv
Abstract
We propose and study the single-frame anisoplanatic deconvolution problem associated with image classification using machine learning algorithms, named the nonuniform defocus removal (NDR) problem. Mathematical analysis of the NDR problem is done and the so-called defocus removal (DR) algorithm for solving it is proposed. Global convergence of the DR algorithm is established without imposing any unverifiable assumption. Numerical results on simulation data show significant features of DR including solvability, noise robustness, convergence, model insensitivity and computational efficiency. Physical relevance of the NDR problem and practicability of the DR algorithm are tested on experimental data. Back to the application that originally motivated the investigation of the NDR problem, we show that the DR algorithm can improve the accuracy of classifying distorted images using convolutional neural networks. The key difference of this paper compared to most existing works on single-fra...
References (36)
- Johnathan Bardsley, Stuart Jefferies, James Nagy, and Robert Plemmons. A compu- tational method for the restoration of images with an unknown, spatially-varying blur. Opt. Express, 14(5):1767, 2006.
- A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci., 2(1):183-202, 2009.
- Amir Beck. First-Order Methods in Optimization, volume 25 of MOS-SIAM Series on Optimization. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Optimization Society, Philadelphia, PA, 2017.
- M. J. Booth, M. A. A. Neil, R. Juskaitis, and T. Wilson. Adaptive aberration correction in a confocal microscope. Proc. Natl. Acad. Sci., 99:5788-5792, 2002.
- Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, Cambridge, 2004.
- M. Cannon. Blind deconvolution of spatially invariant image blurs with phase. IEEE Transactions on Acoust. Speech Signal Process., 24:58-63, 1976.
- C.-F. Chang, J.-L. Wu, and T.-Y. Tsai. A single image deblurring algorithm for nonuni- form motion blur using uniform defocus map estimation. Mathematical Problems in Engineering, 3:1-14, 2017.
- J. C. Dainty and J. R. Fienup. Phase retrieval and image reconstruction for astronomy. Image Recovery: Theory Appl., 13:231-275, 1987.
- Jiangxin Dong, Jinshan Pan, and Zhixun Su. Blur kernel estimation via salient edges and low rank prior for blind image deblurring. Signal Process. Image Commun., 58:134- 145, 2017.
- Kazuki Endo, Masayuki Tanaka, and Masatoshi Okutomi. Classifying Degraded Im- ages Over Various Levels Of Degradation. In 2020 IEEE Int. Conf. Image Process., volume 19, pages 1691-1695. IEEE, 2020.
- W. Feng and S. Boukir. Class noise removal and correction for image classification using ensemble margin. In 2015 IEEE International Conference on Image Processing (ICIP), pages 4698-4702, 2015.
- Ralf C. Flicker and François J. Rigaut. Anisoplanatic deconvolution of adaptive optics images. J. Opt. Soc. Am. A, 22(3):504-513, 2005.
- F. Foster and J. W. Hunt. Transmission of ultrasound beams through human tissue- focussing and attenuation studies. Ultrasound Medicine & Biol., 5:257-268, 1979.
- J. W. Goodman. Introduction to Fourier Optics. Roberts & Company Publishers, 2005.
- M. Hirsch, S. Sra, B. Schölkopf, and S. Harmeling. Efficient filter flow for space-variant multiframe blind deconvolution. In 2010 IEEE Computer Society Conference on Com- puter Vision and Pattern Recognition, pages 607-614, 2010.
- Michael Hirsch, Christian J. Schuler, Stefan Harmeling, and Bernhard Scholkopf. Fast removal of non-uniform camera shake. In 2011 Int. Conf. Comput. Vis., pages 463-470. IEEE, 2011.
- Na Ji. Adaptive optical fluorescence microscopy. Nat Methods, 14:374-380, 2017.
- Van Cuong Kieu, Florence Cloppet, and Nicole Vincent. Local blur correction for document images. In Proc. -Int. Conf. Pattern Recognit., number 1, pages 4059-4064. IEEE, 2016.
- Jinok Kim, Jongsuk Oh, and Rae Hong Park. Removing non-uniform camera shake using blind motion deblurring. In 2016 IEEE Int. Conf. Consum. Electron. ICCE 2016, number 2, pages 351-352. IEEE, 2016.
- Alex Krizhevsky. Learning multiple layers of features from tiny images.
- Li Xu and Jiaya Jia. Depth-aware motion deblurring. In 2012 IEEE Int. Conf. Comput. Photogr., volume 1, pages 1-8. IEEE, 2012.
- J. Liu, M. Yan, and T. Zeng. Surface-aware blind image deblurring. IEEE Transactions on Pattern Analysis and Machine Intelligence, pages 1-15, 2019.
- James G. Nagy and Dianne P. O'Leary. Restoring images degraded by spatially variant blur. SIAM J. Sci. Comput., 19(4):1063-1082, 1998.
- Liyuan Pan, Yuchao Dai, and Miaomiao Liu. Single Image Deblurring and Camera Motion Estimation With Depth Map. In 2019 IEEE Winter Conf. Appl. Comput. Vis., pages 2116-2125. IEEE, 2019.
- Yanting Pei, Yaping Huang, Qi Zou, Xingyuan Zhang, and Song Wang. Effects of Image Degradation and Degradation Removal to CNN-based Image Classification. IEEE Trans. Pattern Anal. Mach. Intell., 14(8):1-1, 2019.
- Paolo Pozzi, Carlas Smith, Elizabeth Carroll, Dean Wilding, Oleg Soloviev, Martin Booth, Gleb Vdovin, and Michel Verhaegen. Anisoplanatic adaptive optics in paral- lelized laser scanning microscopy. Opt. Express, 28(10):14222-14236, 2020.
- Éric Thiébaut, Loïc Denis, Ferréol Soulez, and Rahul Mourya. Spatially variant PSF modeling and image deblurring. In Enrico Marchetti, Laird M. Close, and Jean-Pierre Véran, editors, Adaptive Optics Systems V, volume 9909, pages 2211 -2220. Interna- tional Society for Optics and Photonics, SPIE, 2016.
- R. T. Rockafellar and R. J. Wets. Variational Analysis. Grundlehren Math. Wiss. Springer-Verlag, Berlin, 1998.
- R. Tyrrell Rockafellar. Convex Analysis. Princeton Mathematical Series, No. 28. Prince- ton University Press, Princeton, N.J., 1970.
- F. Roddier. Adaptive Optics in Astronomy. Cambridge University Press, 1999.
- M. Sonka, V. Hlavac, and R. Boyle. Image Processing, Analysis, and Machine Vision. Cengage Learning. Springer, Boston, MA, 2014.
- F. Sroubek, J. Kamenicky, and Y. M. Lu. Decomposition of space-variant blur in image deconvolution. IEEE Signal Process. Lett., 23:346-350, 2016.
- Mikhail A. Vorontsov and Gary W. Carhart. Anisoplanatic imaging through turbulent media: image recovery by local information fusion from a set of short-exposure images. J. Opt. Soc. Am. A, 18(6):1312-1324, 2001.
- Dean Wilding, Oleg Soloviev, Paolo Pozzi, Gleb Vdovin, and Michel Verhaegen. Blind multi-frame deconvolution by tangential iterative projections (TIP). Opt. Express, 25(26):32305-32322, 2017.
- Yuquan Xu, Xiyuan Hu, and Silong Peng. Sharp image estimation from a depth-involved motion-blurred image. Neurocomputing, 171:1185-1192, 2016.
- Tao Yue, Jinli Suo, and Qionghai Dai. Efficient 3D kernel estimation for non-uniform camera shake removal using perpendicular camera system. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. Work., pages 10-15, 2015.