Academia.eduAcademia.edu

Outline

Neutron Position Sensitive Detectors for the ESS

2015, Proceedings of The 23rd International Workshop on Vertex Detectors — PoS(Vertex2014)

https://doi.org/10.22323/1.227.0029

Abstract
sparkles

AI

The European Spallation Source (ESS) aims to be the world's premier neutron source for materials research, with construction ongoing since 2013. The paper discusses the challenges posed by the absence of Helium-3 for neutron detectors and outlines the collaborative approach to developing new detectors from partners across Europe. It highlights the importance of developing specialized centers of excellence and fostering collaboration in order to meet detector requirements for the ESS's proposed instrument suite.

References (37)

  1. European Spallation Source ESS AB, http://www.esss.se
  2. A. Cho, Science 326 (2009) 778-779.
  3. K. Zeitelhack, Neutron News 23, issue 4 (2012) 10-13.
  4. T.M. Persons and G. Aloise, United States Government Accountability Office GAO-11-753 (2011)
  5. D. Kramer, For some, helium-3 supply picture is brightening, Physics Today 64, 20-23 (2011)
  6. R. T. Kouzes, The 3He Supply Problem. Technical Report 11-753, US Government Accountability Office 2011.
  7. D.A. Shea and D. Morgan, The helium-3 shortage: Supply, demand, and options for congress, Congressional Research Service R41419 (2010)
  8. R. Kouzes, The End of He-3 as we know it, IEEE-NSS Conference Record, Soeul (2013).
  9. M. Russina, NEAT Instrument, JCNS Workshop on Trends and Perspectives in Neutron Scattering, Tutzing (2014).
  10. S. Peggs et al, ESS Conceptual Design Report ESS-2012-001 (2012).
  11. S. Peggs et al, ESS Technical Design Report ESS-2013-001, (2013). ISBN 978-91-980 173-2-8.
  12. A. Denoux and G. Lander, ILL Neutron Data Booklet 2nd Edition (2003).
  13. R. Hall-Wilton, Detectors for the European Spallation Source, IEEE NSS conference record (2012), HE-1-1
  14. B. Guerard, R. Hall-Wilton and F. Murtas, Prospects in MPGDs development for neutron detection, Summary of RD51 Academia-Industry Matching Event, CERN October 14-15, 2013, RD51-NOTE-2014-003, arXiv:1078023
  15. 2nd International Workshop on the development of BF3 and B-10 detectors, Grenoble 2012: http://www.ill.eu/news-events/events/2nd-interna tional-10b-bf3-detectors-workshop/presentations/
  16. C. Höglund et al., Journal of Applied Physics 111 (2012) 104908.
  17. M. Klein, PhD thesis, Uni. Heidelberg (1999)
  18. M. Klein, C.J. Schmidt, CASCADE, Nucl. Instr. and Meth. A 628 9-18
  19. J. Correa, PhD Thesis, Uni Zaragoza, (2012)
  20. A. Khaplanov et al., Multi-Grid Boron-10 detector for large area applications in neutron scattering science, arXiv:1209.0566 (2012)
  21. T. Bigault et al., 10B multi-grid proportional gas counters for large area thermal neutron detectors, Neutron News 23, issue 4, 20â Ȃ Ş25 (2012)
  22. K. Andersen et al., 10B multi-grid proportional gas counters for large area thermal neutron detectors, NIM A, 720, 116-121 (2013), http://dx.doi.org/10.1016/j.nima.2012.12.021i
  23. J. Correa et al., 10B4C Multi-Grid as an alternative to 3He for large area neutron detectors, Trans. Nucl. Sc. (2013), DOI: 10.1109/TNS.2012.2227798
  24. I. Stefanescu, Development of a novel macrostructured cathode for large-area neutron detectors based on the 10B-containing solid converter, NIM A, 727, 109-125 (2013)
  25. I. Stefanescu et al, A 10B-based neuron detector with stacked MultiWire Proportional Counters and macrostructured cathodes, JINST 8, P12003 (2013)
  26. M. Henske et al., The 10B based Jalousie neutron detector â Ȃ Ş An alternative for 3He filled position sensitive counter tubes, NIM A686 (2012) 151
  27. F. Piscitelli, Boron-10 layers, Neutron Reflectometry and Thermal Neutron Gaseous Detectors, PhD Thesis, Uni. Perugia (2014). arXiv:1406.3133
  28. F. Piscitelli, Study of a high spatial resolution 10B-based thermal neutron detector for application in neutron reflectometry: the Multi-Blade prototype, JINST 9, P03007 (2014), arXiv:1312.2473.
  29. K. Kanaki et al., A novel small-angle neutron scattering detector geometry, J. Appl. Cryst., Volume 46, Part 4, 1031-1037 (2013). Corrigendum J. Appl. Cryst., Volume 46, Part 4, 1528 (2013).
  30. G. Nowak et al., X-rays, ions, and neutrons probe boron carbide coatings for neutron detection, subm. JAP (2014)
  31. T. Nakamura et al., A half-millimetre spatial resolution fibre-coded linear position-sensitive scintillator detector with wavelength-shifting fibre read-out for neutron detection, NIM A606 (2009) 675.
  32. T. Nakamura et al., A large-area two-dimensional scintillator detector with a wavelength-shifting fibre readout for a time-of-flight single-crystal neutron diffractometer, NIM A686 (2012) 64.
  33. M.L Crow, J.P Hodges and R.G Cooper, Shifting scintillator prototype large pixel wavelength-shifting fiber detector for the POWGEN3 powder diffractometer, NIM A529 (2004) 287.
  34. N.J Rhodes, A.G Wardle, A.J Boram and M.W Johnson, Pixelated neutron scintillation detectors using fibre optic coded arrays, NIM A392 (1997) 315.
  35. M. Heiderich et al., A two-dimensional scintillation detector for small angle neutron scattering, NIM A305 (1991) 423.
  36. G. Kemmerling et al., A new two-dimensional scintillation detector system for small-angle neutron scattering experiments, IEEE Transactions on Nuclear Science 4 48 (2001) 1114.
  37. C. Schulz, PhD Thesis, Freien Universitat Berlin (1999).