Academia.eduAcademia.edu

Outline

Towards electrochromic ammonium ion sensors

2018, Electrochemistry Communications

https://doi.org/10.1016/J.ELECOM.2018.08.002

Abstract

The optical properties of electrochemically deposited Prussian blue (PB) on an indium tin oxide (ITO)-coated glass electrode (glass/ITO) were investigated at different ammonium ion concentrations (0.01 M to 0.1 M) in order to use this electrode to design an electrochromic sensor sensitive to ammonium ions. The glass/ITO/PBbased structure exhibited a fast optical-absorbance-based response towards ammonium ions. A protocol for simple regeneration of the glass/ITO/PB structure after the determination of ammonium ion concentration has been developed. 2. Experimental 2.1. Materials All inorganic salts (FeCl 3 •6H 2 0, K 3 [Fe(CN) 6 ], NH 4 Cl, KCl) of 'highest purity' and acetone (purity ≥99.8%) were purchased from ROTH (Karlsruhe, Germany). MICRO®-90 concentrated cleaning solution was purchased from SIGMA-ALDRICH

References (25)

  1. M.A. Deshmukh, M. Gicevicius, A. Ramanaviciene, M.D. Shirsat, R. Viter, A. Ramanavicius, Hybrid electrochemical/electrochromic Cu(II) ion sensor proto- type based on PANI/ITO-electrode, Sensors Actuators B Chem. 248 (2017) 527-535.
  2. S. Demiri, M. Najdoski, J. Velevska, A simple chemical method for deposition of electrochromic Prussian blue thin films, Mater. Res. Bull. 46 (12) (2011) 2484-2488.
  3. N. Adhoum, L. Monser, Electrochemical sensor for hydroperoxides determination based on Prussian blue film modified electrode, Sensors Actuators B Chem. 133 (2) (2008) 588-592.
  4. S. Su, X. Han, Z. Lu, W. Liu, D. Zhu, J. Chao, C. Fan, L. Wang, S. Song, L. Weng, L. Wang, Facile synthesis of a MoS 2 -Prussian blue nanocube nanohybrid-based electrochemical sensing platform for hydrogen peroxide and carcinoembryonic antigen detection, ACS Appl. Mater. Interfaces 9 (14) (2017) 12773-12781.
  5. A.S. Adekunle, B.B. Mamba, B. Agboola, K.I. Ozoemena, Nitrite electrochemical sensor based on Prussian blue/single-walled carbon nanotubes modified pyrolytic graphite electrode, Int. J. Electrochem. Sci. 6 (9) (2011) 4388-4403.
  6. A.A. Karyakin, E.E. Karyakina, L. Gorton, Amperometric biosensor for glutamate using Prussian blue-based "artificial peroxidase" as a transducer for hydrogen peroxide, Anal. Chem. 72 (7) (2000) 1720-1723.
  7. A.A. Karyakin, O.V. Gitelmacher, E.E. Karyakina, Prussian blue-based first-gen- eration biosensor. A sensitive amperometric electrode for glucose, Anal. Chem. 67 (14) (1995) 2419-2423.
  8. A.A. Karyakin, E.E. Karyakina, L. Gorton, Prussian-blue-based amperometric bio- sensors in flow-injection analysis, Talanta 43 (9) (1996) 1597-1606.
  9. A.A. Karyakin, O.V. Gitelmacher, E.E. Karyakina, A high-sensitive glucose am- perometric biosensor based on Prussian blue modified electrodes, J. Anal. Lett. 27 (15) (1994) 2861-2869.
  10. A. Ramanavičius, A.I. Rekertaitė, R. Valiūnas, A. Valiūnienė, Single-step procedure for the modification of graphite electrode by composite layer based on polypyrrole, Prussian blue and glucose oxidase, Sensors Actuators B Chem. 240 (2017) 220-223.
  11. A. Valiūnienė, P. Virbickas, A. Rekertaitė, A. Ramanavičius, Amperometric glucose biosensor based on titanium electrode modified with Prussian blue layer and im- mobilized g oxidase, J. Electrochem. Soc. 164 (14) (2017) 781-784.
  12. A. Valiūnienė, A.I. Rekertaitė, A. Ramanavičienė, L. Mikoliūnaitė, A. Ramanavičius, Fast Fourier transformation electrochemical impedance spectroscopy for the in- vestigation of inactivation of glucose biosensor based on graphite electrode mod- ified by Prussian blue, polypyrrole and glucose oxidase, Colloids Surf. A Physicochem. Asp. 532 (2017) 165-171.
  13. S. Cinti, R. Cusenza, D. Moscone, F. Arduini, Paper-based synthesis of Prussian blue nanoparticles for the development of whole blood glucose electrochemical bio- sensor, Talanta 187 (2018) 59-64.
  14. B. Thakur, X. Guo, J. Chang, M. Kron, J. Chen, Porous carbon and Prussian blue composite: a highly sensitive electrochemical platform for glucose biosensing, Sens. Bio-Sens. Res. 14 (2017) 47-53.
  15. M.H. Elshorbagya, R. Ramadan, K. Abdelhady, Preparation and characterization of spray-deposited efficient Prussian blue electrochromic thin film, Optik 129 (2017) 130-139.
  16. J. Agrisuelas, J.J. García-Jareño, D. Gimenez-Romero, F. Vicente, Insights on the mechanism of insoluble-to-soluble Prussian blue transformation, J. Electrochem. Soc. 156 (10) (2009) 149-156.
  17. A.A. Karyakin, E.E. Karyakina, L. Gorton, On the mechanism of H 2 O 2 reduction at Prussian blue modified electrodes, Electrochem. Commun. 1 (1999) 78-82.
  18. H. Dassel, A. Dostal, F. Scholz, Hexacyanoferrate-based composite ion-sensitive electrodes for voltammetry, Fresenius J. Anal. Chem. 355 (1996) 21-28.
  19. M. Hermes, F. Scholz, The electrochemical determination of ammonium based on the selective inhibition of the low-spin iron(II)/(III) system of Prussian blue, J. Solid State Electrochem. 1 (1997) 215-220.
  20. C.A. Lundgren, R.W. Murray, Observations on the composition of Prussian blue films and their electrochemistry, Inorg. Chem. 27 (5) (1988) 933-939.
  21. J.J. García-Jareño, J. Navarro-Laboulais, F. Vicente, A numerical approach to the voltammograms of the reduction of Prussian blue films on ITO electrodes, Electrochim. Acta 42 (10) (1997) 1473-1480.
  22. D. Gimenez-Romero, P.R. Bueno, J.J. Garcıa-Jareno, C. Gabrielli, H. Perrot, F. Vicente, Mechanism for interplay between electron and ionic fluxes in K h Fe k [Fe (CN) 6 ] l •mH 2 O compounds, J. Phys. Chem. B 110 (2006) 2715-2722.
  23. C.G. Grandqvist, Handbook of Inorganic Electrochromic Materials, Elsevier, 1995.
  24. A.A. Karyakin, Prussian blue and its analogues: electrochemistry and analytical applications, Electroanalysis 13 (2001) (No. 10).
  25. K. Itaya, I. Uchida, Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues, Acc. Chem. Res. 19 (1986) 162-168.