Academia.eduAcademia.edu

Outline

Thermal skyrmion diffusion applied in probabilistic computing

2018, arXiv (Cornell University)

Abstract

Thermally activated processes are key to understanding the dynamics of physical systems. Thermal diffusion of (quasi-)particles for instance not only yields information on transport and dissipation processes but is also an exponentially sensitive tool to reveal emergent system properties and enable novel applications such as probabilistic computing. Here we probe the thermal dynamics of topologically stabilized magnetic skyrmion quasi-particles. We demonstrate in a specially tailored low pinning multilayer material system pure 2 skyrmion diffusion that dominates the dynamics. Finally, we analyse the applicability to probabilistic computing by constructing a device, which uses the thermally excited skyrmion dynamics to reshuffle a signal. Such a skyrmion reshuffler is the key missing component for probabilistic computing and by evaluating its performance, we demonstrate the functionality of our device with high fidelity thus enabling probabilistic computing.

References (43)

  1. Fert, A., Cros, V. & Sampaio, J. Skyrmions on the track. Nat. Nanotechnol. 8, 152-156 (2013).
  2. Zhang, X. et al. Skyrmion-skyrmion and skyrmion-edge repulsions in skyrmion-based racetrack memory. Sci. Rep. 5, 7643 (2015).
  3. Huang, Y., Kang, W., Zhang, X., Zhou, Y. & Zhao, W. Magnetic skyrmion-based synaptic devices. Nanotechnology 28, 08LT02 (2017).
  4. Pinna, D. et al. Skyrmion Gas Manipulation for Probabilistic Computing. arXiv 1701.07750 (2017).
  5. Xing, X., Pong, P. W. T. & Zhou, Y. Skyrmion domain wall collision and domain wall- gated skyrmion logic. Phys. Rev. B 94, 1-11 (2016).
  6. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: Advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
  7. Dzyaloshinsky, I. A thermodynamic theory of 'weak' ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241-255 (1958).
  8. Moriya, T. T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91-98 (1960).
  9. Rößler, U. K. et al. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797-801 (2006).
  10. Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915-919 (2009).
  11. Huang, S. X. & Chien, C. L. Extended skyrmion phase in epitaxial FeGe(111) thin films. Phys. Rev. Lett. 108, 267201 (2012).
  12. Yu, X. Z. et al. Near room-temperature formation of a skyrmion crystal in thin-films of the helimagnet FeGe. Nat. Mater. 10, 106-109 (2011).
  13. Jiang, W. et al. Skyrmions in magnetic multilayers. Phys. Rep. 704, 1-49 (2017).
  14. Wiesendanger, R. Nanoscale magnetic skyrmions in metallic films and multilayers: A new twist for spintronics. Nat. Rev. Mater. 1, 16044 (2016).
  15. Rózsa, L. et al. Skyrmions with Attractive Interactions in an Ultrathin Magnetic Film. Phys. Rev. Lett. 117, 157205 (2016).
  16. Jonietz, F. et al. Spin transfer torques in MnSi at ultralow current densities. Science 330, 1648-1651 (2010).
  17. Yu, X. Z. et al. Skyrmion flow near room temperature in an ultralow current density. Nat. Commun. 3, 988 (2012).
  18. Jiang, W. J. et al. Blowing magnetic skyrmion bubbles. Science 349, 283-286 (2015).
  19. Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501-506 (2016).
  20. Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170-175 (2017).
  21. Schütte, C., Iwasaki, J., Rosch, A. & Nagaosa, N. Inertia, diffusion, and dynamics of a driven skyrmion. Phys. Rev. B 90, 174434 (2014).
  22. Thiele, A. A. Steady-state motion of magnetic domains. Phys. Rev. Lett. 30, 230-233 (1973).
  23. Soumyanarayanan, A. et al. Tunable room-temperature magnetic skyrmions in Ir/Fe/Co/Pt multilayers. Nat. Mater. 16, 898-904 (2017).
  24. Rózsa, L. et al. Formation and stability of metastable skyrmionic spin structures with various topologies in an ultrathin film. Phys. Rev. B 95, 94423 (2017).
  25. Zhang, X. et al. Magnetic skyrmion logic gates: conversion, duplication and merging of skyrmions. Sci. Rep. 5, 9400 (2015).
  26. Gupta, P. K. & Kumaresan, R. Binary multiplication with PN sequences. IEEE Trans. Acoust. 36, 603-606 (1988).
  27. Yu, G. et al. Room-Temperature Creation and Spin-Orbit Torque Manipulation of Skyrmions in Thin Films with Engineered Asymmetry. Nano Lett. 16, 1981-1988 (2016).
  28. Büttner, F. et al. Magnetic states in low-pinning high-anisotropy material nanostructures suitable for dynamic imaging. Phys. Rev. B 87, 134422 (2013).
  29. Jaiswal, S. et al. Investigation of the Dzyaloshinskii-Moriya interaction and room temperature skyrmions in W/CoFeB/MgO thin films and microwires. Appl. Phys. Lett. 111, 22409 (2017).
  30. Lemesh, I., Büttner, F. & Beach, G. S. D. Accurate model of the stripe domain phase of perpendicularly magnetized multilayers. Phys. Rev. B 95, 174423 (2017).
  31. Lo Conte, R. et al. Role of B diffusion in the interfacial Dzyaloshinskii-Moriya interaction in Ta/Co20 F e60 B20/MgO nanowires. Phys. Rev. B 91, 14433 (2015).
  32. Sitte, M. et al. Current-driven periodic domain wall creation in ferromagnetic nanowires. Phys. Rev. B 94, 64422 (2016).
  33. Stier, M., Häusler, W., Posske, T., Gurski, G. & Thorwart, M. Skyrmion-Anti-Skyrmion Pair Creation by in-Plane Currents. Phys. Rev. Lett. 118, 267203 (2017).
  34. Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin-orbit torques. Nat. Nanotechnol. 12, 1040-1044 (2017).
  35. Everschor-Sitte, K., Sitte, M., Valet, T., Abanov, A. & Sinova, J. Skyrmion production on demand by homogeneous DC currents. New J. Phys. 19, 92001 (2017).
  36. Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676-682 (2012).
  37. Jaqaman, K. et al. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5, 695-702 (2008).
  38. Tinevez, J. Y. et al. TrackMate: An open and extensible platform for single-particle tracking. Methods 115, 80-90 (2017).
  39. Tejedor, V. et al. Quantitative analysis of single particle trajectories: Mean maximal excursion method. Biophys. J. 98, 1364-1372 (2010).
  40. Nowak, U. Classical Spin Models. in Micromagnetism -Handbook of Magnetism and Advanced Magnetic Materials (John Wiley & Sons, Ltd, 2007). doi:10.1002/9780470022184.hmm205
  41. Mehrer, H. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Springer-Verlag Berlin Heidelberg 155, (Springer Berlin Heidelberg, 2007).
  42. Cussler, E. L. Diffusion: Mass Transfer in Fluid Systems. (Cambridge University Press, 2007).
  43. Mueller, J. & Rosch, A. Capturing of a magnetic skyrmion with a hole. Phys. Rev. B 91, 54410 (2015).