Academia.eduAcademia.edu

Outline

Curvature dominance dark energy model in f(R)-gravity

Indian Journal of Physics

https://doi.org/10.1007/S12648-023-02674-3

Abstract

We have probed a cosmological model in f (R)-gravity, which is a cubic equation in scalar curvature R. The terms arise due to nonlinear f (R) function are treated as energy due to curvature inspired geometry. As a result, we find accelerating expansion in the universe, which creates an anti-gravitating negative pressure in it. Some of the physical parameters are solved using numerical methods. The evolution of the model are examined by the latest observational Hubble data (46data points) and Pantheon data (the latest compilation of SNIa with 40 binned in the redshift range 0.014 z 1.62). Some important features of the model have been discussed by analyzing the plots of various dynamical parameters. The plots of deceleration parameter q and the Hubble parameter H describe the accelerating expansion in the evolution of the Universe at the present epoch. The transition from deceleration to acceleration for our model is obtained at redshift ztr 0.694069, which is in good agreement with ΛCDM. We have also carried out state finder analysis for our model. The analysis of specific features of the model confirms that our model is consistent with ΛCDM in late times.

Key takeaways
sparkles

AI

  1. The model demonstrates accelerating universe expansion consistent with ΛCDM, with a transition redshift z_tr at 0.694069.
  2. Utilizing 46 Hubble data points and 40 Pantheon supernova observations validates the proposed f(R) model.
  3. The deceleration parameter q is found to be -0.55, indicating current acceleration in the universe.
  4. The model incorporates a cubic f(R) function, specifically f(R) = R + αR² + βR³, to describe curvature effects.
  5. State finder analysis confirms the model's proximity to ΛCDM, supporting its observational validity.

References (33)

  1. S. Perlmutter et al., Astrophys. J., 517, 5 (1999)
  2. A. G. Riess et al., Astron. J., 116, 1009 (1998)
  3. J. P. Ostriker and P. J. Steinhardt, Nature 377, 600 (1995), and references therein.
  4. M. S. Turner, G. Steigman, and L. Krauss, Phys. Rev. Lett., 52, 2090 (1984)
  5. D. N. Spergel et al., [WMAP Collaboration], Astrophys. J. Suppl. Ser., 170, (2007) 377
  6. M. Tegmark et al., [SDSS Collaboration], Phys. Rev. D, 69 , 103501 (2004)
  7. E. J. Copeland, M. Sami and S. Tsujikawa, Int. J. Mod. Phys. D, 15, 1753 (2006)
  8. O. Gron and S. Hervik, Einstien's General Theory of Relativity With Modern Application in Cosmology, (New York: Springer) (2007)
  9. K. Abazajian et al., [SDSS Collaboration], Astron. J., 128, 502 (2004)
  10. V. Sahni and A. A. Starobinsky, Int. J. Mod. Phys. D, 9, 373 (2000)
  11. S. Weinberg, Rev. Mod. Phys. 61, 1 ( 1989)
  12. P. Steinhardt, L. Wang and I. Zlatev, Phys. Rev. D, 59, 123504 (1999)
  13. V. B. Johri, Phys. Rev. D, 63 103504 (2001)
  14. S. Nojiri and S. D. Odintsov, Phys. Rev. D, 68 123512 (2003)
  15. A. A. Starobinsky, JETP Lett., 86 157 (2007)
  16. T. P. Sotiriou and S. Liberati, J. Phys. Conf. Ser., 68 012022 (2007)
  17. T. P. Sotiriou and S. Liberati, Annals Phys., 322 935 (2007)
  18. S. K. Srivastava and Phys. Lett, B, 648 (2007) 119 (2007)
  19. A. Mukherjee and N. Banerjee, Astrophys. Space Sci., 352 893 (2014)
  20. G. C. Samantha and N. Godani, Ind. J. Phys., 94 1303 (2020)
  21. Ciprian A. Sporea, arXiv:1403.3852v2 [gr-qc] (2014)
  22. M. Mali and S. Shankaranarayanan, Nuclear Phys. B, 937, 422 (2018)
  23. S. Capozziello, Int. J. Mod. Phys. D, 11, 483 (2002)
  24. Jonathan D. Evans, Lisa M. H. Hall, and Philippe Caillol, Phys. Rev. D, 77, 083514 (2008)
  25. J. D. Barrow and S. Cotsakis, Phys. Lett. B, 214 515518, (1988)
  26. P. A. R. Ade et al., (Planck 2015 Collaboration), A. A., 594 A20 (2016)
  27. J. D. Barrow and S. Cotsakis, Phys. Lett. B, 214 515 (1988)
  28. P. Biswas, P. Roy and R. Biswas, arXiv: 1908.00408 [gr-qc] (2019)
  29. D. M. Scolnic et al., Astrophys. J, 859 101 (2018)
  30. P. A. R. Ade, et al., Planck Λ Collaboration, Astron. Astrophys., 594 A13 (2016)
  31. N. Suzuki et al., Astrophys. J., 746 (2012) 85
  32. V. Sahni et al., JETP Lett., 77 201 (2003)
  33. U. Alam et al., Mon. Not. Roy. Astron. Soc., 344 1057 (2003)