Biotic control of fermentative microbial ecosystems
2013, HAL (Le Centre pour la Communication Scientifique Directe)
Abstract
Un grand nombre d'espèces microbiennes, issues d'environnements variés, peuvent produire du biohydrogène par voie fermentaire. Le potentiel des cultures mixtes microbiennes est particulièrement intéressant au regard de leur large flexibilité métabolique permettant d'envisager d'utiliser des ressources organiques complexes issues du traitement de la biomasse. Toutefois, la diversité microbienne des cultures mixtes est également source d'instabilité des procédés via l'expression de métabolismes bactériens multiples pouvant conduire notamment à une reconsommation du bioH2 produit. A ce jour, peu de moyens d'actions, et essentiellement des modifications physico-chimiques, permettent d'assurer l'optimisation des procédés continus de production de biohydrogène. Les recherches menées ont permis d'identifier puis d'utiliser des espèces-clés situées au coeur des réseaux métaboliques en tant que contrôleur biologique des écosystèmes microbiens, et ceci en améliorant la stabilité et les rendements de conversion en biohydrogène.
References (29)
- Ahring B.K., Westermann P.,1987. Kinetics of Butyrate, Acetate, and Hydrogen Metabolism in a Thermophilic, Anaerobic, Butyrate-Degrading Triculture. Appl. Environ. Microbiol. 53(2): 434-439
- Benomar S., Cárdenas M.L., Trably E., Rafrafi Y., Ducret A., Hamelin J., Lojou E., Steyer J.P., Giudici- Orticoni M.T., 2013. Cell-cell interactions in mixed bacterial culture induce metabolic coupling and improve hydrogen production. Nat. Commun. (soumis)
- Chang J.J., Chou C.H., Ho C.Y., Chen W.E., Lay J.J., Huang C.C., 2008. Syntrophic co-culture of aerobic Bacillus and anaerobic Clostridium for bio-fuels and bio-hydrogen production. Int. J.Hydrogen Energy 33 : 5137-5146.
- Chen C.C., Lin C.Y., Lin M.C., 2002. Acid-base enrichment enhances anaerobic hydrogen production process. Appl. Microbiol. Biotechnol. 58(2): 224-228 EIA. Energy Information Administration (2007). http://www.eia.doe.gov/ Fang H.H.P., Zhang T., Liu H., 2002. Microbial diversity of a mesophilic hydrogen-producing sludge. Appl. Microbiol. Biotechnol. 58(1): 112-118.
- Fang H.H.P., Zhu H., Zhang T., 2006. Phototrophic hydrogen production from glucose by pure and co- cultures of Clostridium butyricum and Rhodobacter sphaeroides. Int. J.Hydrogen Energy 31 : 2223- 2230.
- Fukuzaki S., Nishio N., Shobayashi M., Nagai S., 1990. Inhibition of the fermentation of propionate to methane by hydrogen, acetate and propionate. Appl. Environ. Microbiol. 56(3): 719-723
- Geng A., He Y., Qian C., Yan X., Zhou Z., 2010. Effect of key factors on hydrogen production from cellulose in a co-culture of Clostridium thermocellum and Clostridium thermopalmarium. Bioresour Technol 2010, 101 : 4029-4033.
- Guo X.M., Trably E., Latrille E., Carrere H., Steyer J.P., 2010. Hydrogen production from agricultural waste by dark fermentation: A review. International Journal of Hydrogen Energy, 35 (19): 10660-10673
- Hastings A., Byers J.E., Crooks J.A., Cuddington K., Jones C.G., Lambrinos J.G., Talley T.S., Wilson W.G., 2007. Ecosystem engineering in space and time. Ecol. Lett. 10: 153-164
- Koskinen P.E.P., Kaksonen A.H., Puhakka J.A., 2007. The relationship between instability of H2 production and compositions of bacterial communities within a dark fermentation fluidized-bed bioreactor. Biotechnol. Bioeng. 97 (4): 742-758
- Latrille E., Trably E., Larroche C., 2011. Production de biohydrogène : voie fermentaire sombre. Techniques de l'Ingénieur, article numéro BIO 3351 (19 pages)
- Lee M.J., Zinder S.H., 1988. Hydrogen partial pressure in a thermophilic acetate-oxydizing methanogenic coculture. Appl. Environ. Microbiol. 54(6): 1457-1461
- Lee J.Y., Chen X.J., Lee E.J., Min K.S., 2012. Effects of pH and carbon sources on biohydrogen production by co-culture of Clostridium butyricum and Rhodobacter sphaeroides. J Microbiol Biotechnol 22 : 400-406.
- Li C., Fang H.H.P., 2007. Fermentative Hydrogen Production From Wastewater and Solid Wastes by Mixed Cultures. Crit. Rev. Environ. Science Technol. 37(1): 1-39
- Liu Y., Yu P., Song X., Qu Y., 2008. Hydrogen production from cellulose by co-culture of Clostridium thermocellum JN4 and Thermoanaerobacterium thermosaccharolyticum GD17. Int J of Hydrogen Energy 2008, 33 : 2927-2933.
- Masset J., Calusinska M., Hamilton C., Hiligsmann S., Joris B., Wilmotte A., Thonart P., 2012. Fermentative hydrogen production from glucose and starch using pure strains and artificial co-cultures ofClostridium spp. Biotechnol Biofuels 2012, 5 : 35-41
- Monlau F., Sambusiti C., Barakat A., Guo X.M., Latrille E., Trably E., Steyer J.P., Carrere H., 2012. Predictive models of biohydrogen and biomethane production based on the compositional and structural features of lignocellulosic materials. Environmental Science and Technology, 46 (21): 12217-12225 Innovations Agronomiques 26 (2013), 67-82
- Monlau F., Barakat A., Trably E., Dumas C., Steyer J.P., Carrere H., 2013. Lignocellulosic materials into Biohydrogen and Biomethane: impact of structural features and pretreatment. Critical Reviews in Environmental Science and Technology, 43 (3): 260-322
- Pessiot J., Nouaille R., Jobard M., Singhania R., Bournilhas A., Christophe G., Fontanille P., Peyret P., Fonty G., Larroche C., 2012. Fed-batch anaerobic valorization of slaughterhouse by-products with mesophilic microbial consortia without methane production. Appl. Biochem. Biotechnol., 167, 1728- 1743
- Rafrafi Y., Trably E., Hamelin J., Latrille E., Meynial-Salles I., Benomar S., Guidici-Orticoni M.T., Steyer J.P., 2013. Sub-dominant bacteria as keystone species in microbial communities producing bio-hydrogen. International Journal of Hydrogen Energy, (in press)
- Schröder C., Selig M., Schönheit P., 1994. Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch. Microbiol. 161: 460-470
- Soni B.K., Soucaille P., Goma G., 1987. Continuous acetone butanol fermentation : influence of vitamins on the metabolic activity of Clostridium acetobutylicum. Appl. Microbiol. Biotechnol. 27:1-5
- Stolyar S., Van Dien S., Hillesland K.L., Pinel N., Lie T.J., Leigh J.A., Stahl D.A., 2007. Metabolic modeling of a mutualistic microbial community. Mol. Syst. Biol. 3(92): 1-14
- Tanouchi Y., Smith R., You L., 2012. Engineering microbial systems to explore ecological and evolutionary dynamics. Curr. Opin. Biotechnol. 23(5): 791-797
- Ueno Y., Otsuka S., Morimoto M., 1996. Hydrogen Production from Industrial Wastewater by Anaerobic Microflora in Chemostat Culture. J. Ferment. Bioeng. 82(2): 194-197
- Vavilin V.A., Rytow S.V., Lokshina L.Y., 1995. Modeling hydrogen partial pressure change as a result of competition between the butyric and propionic groups of acidogenic bacteria. Bioresour. Technol. 54(2): 171-177
- Yokoi H., Maki R., Hirose J., Hayashi S., 2002. Microbial production of hydrogen from starch- manufacturing wastes. Biomass and Bioenergy 22 : 389-395.
- Zhang Z.P., Show K.Y., Tay J.H., Liang D.T., Lee D.J., Jiang W.J., 2006. Effect of hydraulic retention time on biohydrogen production and anaerobic microbial community. Process Biochem. 41(10): 2118- 2123
- Zhang X., Ye X., Finneran K.T., Zilles J.L., Morgenroth E., 2012. Interactions between Clostridium beijerinckii and Geobacter metallireducens in co-culture fermentation with anthrahydroquinone-2, 6- disulfonate (AH(2) QDS) for enhanced biohydrogen production from xylose. Biotechnol Bioeng. Aug 7. doi: 10.1002/bit.24627.