Academia.eduAcademia.edu

Outline

Cartilage: Multiscale Structure and Biomechanical Properties

2016, MRS Advances

https://doi.org/10.1557/ADV.2016.184

Abstract

ABSTRACTCartilage is a load bearing tissue that has multiple biological functions. The major proteoglycan in cartilage is the bottlebrush shaped aggrecan whose complexes with hyaluronic acid provide the compressive resistance of cartilage. The negatively charged aggrecan-hyaluronic acid complexes generate an osmotic swelling pressure within the tissue, which is balanced by the collagen network. To better understand the function of cartilage at the tissue level, we study aggrecan assemblies using an array of microscopic and macroscopic techniques. The organization of aggrecan assemblies at the supramolecular level is probed by light scattering, small-angle neutron scattering and small-angle X-ray scattering. Osmotic and rheological measurements are used to investigate the macroscopic physical properties.

References (26)

  1. A. G. Ogston, "The biological functions of the glycosaminoglycans," Chemistry and Molecular Biology of the Intercellular Matrix, vol. 3, ed. E. A. Balazs, (Academic Press, 1970) pp. 1231-1240.
  2. T. Wight, Mecham, R. eds. Biology of Proteoglycans (Biology of Extracellular Matrix), Academic, New 1987.
  3. V. C. Hascall, ISI Atlas of Science: Biochemistry 1, 189-198 (1988).
  4. I. Rosenberg, W. Hellmann, A. K. Kleinschmidt, J. Biochem. 245, 4123-4130 (1970).
  5. I. Rosenberg, W. Hellmann, A. K. Kleinschmidt, J. Biochem. 250, 1877-1993 (1975).
  6. V. C. Hascall, J. Supramol. Struct. 7, 101-120 (1977).
  7. N. Meechai, A. M. Jamieson, J. Blackwell, D. A. Carrino, R. Bansal, J. Rheol. 46, 685-707 (2002).
  8. P. J. Basser, R. Schneiderman, R. A. Bank, E. Wachtel, A. Maroudas, Archives of Biochemistry and Biophysics 351, 207-219 (1998).
  9. P. L. Chandran, F. Horkay, Acta Biomaterialia 8, 3-12 (2012).
  10. M. Nagy, F. Horkay, Acta Chim Acad Sci Hung, 104, 49-61 (1980).
  11. F. Horkay, M. Zrinyi, Macromolecules 15, 1306-1310 (1982).
  12. NIST Cold Neutron Research Facility, NG3 and NG7 30-m. SANS Instruments Data Aquisition Manual, 1999.
  13. R. Berne, R. Pecora, Dynamic Light Scattering, Academic, London 1976.
  14. D. Stauffer, A. Coniglio, M. Adam, "Gelation and critical phenomena" in Adv. Polymer Science 44, ed. K. Dusek (Springer, 1982) pp. 103-158.
  15. W. D. Dozier, J. S, Huang, L. J. Fetters, Macromolecules 24, 2810-2814 (1991).
  16. S. Rathgeber, T. Pakula, A. Wilk, K. Matyjaszewski, K. L. Beers, J. Chem. Phys. 122, 124904 (2005)
  17. S. Rathgeber, T. Pakula, A. Wilk, K. Matyjaszewski, H. Lee, K. L. Beers, Polymer 47, 7318- 7327 (2006)
  18. P. G. de Gennes, Scaling Concepts in Polymer Physics, Cornell, Ithaca NY 1979.
  19. A. M. Hecht, A. Guillermo, F. Horkay, S. Mallam, J. F. Legrand, E, Geissler, Macromolecules 25, 3677-3684 (1992).
  20. A. M. Hecht, F. Horkay, P. Schleger, E. Geissler, E. Macromolecules 35, 8552-8555 (2002).
  21. M. Dubois-Violette, P. G. de Gennes, Physics, 3, 37-45 (1967).
  22. J. E. Martin, J. Wilcoxon, J. Odinek, J. Phys. Rev. A, 43, 858-872 (1991).
  23. C. Wu, S. Zhou, Macromolecules 29, 1574-1578 (1996).
  24. F. Horkay, A. M. Hecht, E. Geissler, J. Chem. Phys. 91, 2706-2711 (1989).
  25. G. B. McKenna, F. Horkay, Polymer 35, 5737-5742 (1994).
  26. F. Horkay, G. B. McKenna, Polymer Networks and Gels in Physical Properties of Polymers Handbook, ed. J.E. Mark (Springer, 2007) pp. 497-523.