Variogram model selection
https://doi.org/10.1007/978-3-031-04137-2_3Abstract
A common problem in geostatistics is variogram estimation, in order to choose an acceptable model for kriging. Nevertheless, there is no standard method, first, to test if a particular model can be accepted as valid and, second, to choose among several competing variogram models. The problem is even more complex if, in addition, there are outliers in the data. In this paper we propose to use the distribution of some classical and robust variogram estimators to test, first, the validity of a particular model, accepting it if the p-value of the test, with this particular model as null hypothesis, is large enough and, second, to compare several competing models, choosing the model with the largest p-value among several acceptable models.
Key takeaways
AI
AI
- The paper proposes a method for validating variogram models using p-values derived from robust estimators.
- It highlights the significance of selecting the variogram model with the largest p-value among competing models.
- Robust variogram estimators are particularly useful in the presence of outliers in the data.
- The study emphasizes the use of VOM+SAD approximations for estimating distributions of variogram estimators.
- An example with groundwater data illustrates the application of both classical and robust variogram estimators.
References (13)
- Akaike, H.: Information theory and an extension of the maximum likelihood principle. In: Petrov, B.N., Csáki, F. (eds.) 2nd International Symposium on Information Theory, pp. 267- 281. Akadémiai Kiadó, Budapest (1973)
- Cabrero-Ortega, M.Y., García-Pérez, A.: Análisis estadístico de datos espaciales con QGIS y R. Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain (2020)
- García-Pérez, A.: Saddlepoint approximations for the distribution of some robust estimators of the variogram. Metrika 83(1), 69-91 (2020)
- García-Pérez, A.: New robust cross-variogram estimators and approximations of their distri- butions based on saddlepoint techniques (2020). Submitted
- García-Pérez, A.: Robust spatio-temporal variogram estimators and a saddlepoint approxima- tion for their distributions (2020). Submitted
- Gorsich, D.J., Genton, M.G.: Variogram model selection via nonparametric derivative estima- tion. Math. Geol. 32(3), 249-270 (2000)
- Marko, K., Al-Amri, N.S., Elfeki, A.M.M.: Geostatistical analysis using GIS for mapping groundwater quality: case study in the recharge area of Wadi Usfan, western Saudi Arabia. Arab. J. Geosci. 7, 5239-5252 (2014)
- Matheron, G.: Traité de géostatistique appliquée, Tome I: Mémoires du Bureau de Recherches Géologiques et Minières, no. 14, Editions Technip, Paris (1962)
- Matheron, G.: Les variables régionalisées et leur estimation. Masson, Paris (1965)
- Muñoz-Pardo, J.F.: Approche géostatistique de la variabilité spatiale des milieux géophysique. MA Thesis, Université de Grenoble et lÍnstitut National Polytechnique de Grenoble (1987)
- Webster, R., McBratney, A.B.: On the Akaike Information Criterion for choosing models for variograms of soil properties. Eur. J. Soil. Sci. 40, 493-496 (1989)
- Webster, R., Oliver, M.A.: Sample adequately to estimate variograms of soil properties. Eur. J. Soil. Sci. 43, 177-192 (1992)
- Webster, R., Oliver, M.A.: Geostatistics for Environmental Scientists, 2nd edn. Wiley, Chich- ester (2007)