Academia.eduAcademia.edu

Outline

Natural Climate Drivers Dominate in the Current Warming

2023, Science of Climate Change

https://doi.org/10.53234/SCC202304/03

Abstract

Anthropogenic global warming (AGW) is the prevailing theory of the IPCC for global warming. Greenhouse (GH) gases are the major drivers, whereas albedo, aerosols, and clouds have had cooling effects, and natural drivers have an insignificant role (<0.8 %). According to Assessment Report 6 (AR6), these radiative forcings (RF) have been a total of 2.70 Wm-2 causing a temperature increase of 1.27 °C in 2019. Many research studies are showing significantly lower RF and climate sensitivity values for anthropogenic climate drivers. Research studies offering natural climate drivers as the partial or total solution for global warming have gradually emerged like solar radiation changes, cosmic forces, and multidecadal, century-and millennial-scale oscillations. The cloud effects are still a major concern in General Circulation Models (GCMs). The cloudiness changes have a major role in cosmic effects like magnifying the warming effect of the Total Solar Irradiation (TSI). The 60-and 88-year oscillations are the best-known oscillations, which are commonly known as AMO (Atlantic Multidecadal Oscillation) and the Gleissberg cycle explaining the ups and downs of the global temperature in the 1900s. Mechanisms of long-term climate oscillations are still under debate. There are also essential differences between carbon cycle models and GH effect magnitude specifications. The synthesis of these natural climate drivers together with anthropogenic drivers constitutes an alternative theory called Natural Anthropogenic Global Warming (NAGW), in which natural drivers have a major role in dominating the warming during the current warm period. These results mean that there is no climate crisis and a need for prompt CO2 reduction programs.

References (121)

  1. Agnihotri R, Dutta K, Bhushan R, Somayajulu BLK, 2002: Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planet Sci Lett, 198, 521-527. https://doi.org/10.1016/S0012-821X(02)00530-7
  2. Attolini MR, Cecchini S, Galli M, Nanni T, 1987: The Gleissberg and 130-year periodicity in the cosmogenic isotopes in the past: The Sun as a quasi-periodic system. Proceedings of the 20th International Cosmic Ray Conference, Moscow, 4, 323, Nauka, Moscow. https://articles.ad- sabs.harvard.edu/pdf/1987ICRC...20d.323A
  3. Bard E, Raisbeck G, Françoise You F, Jouzel J, 1997: Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth & Planet Sci Lett, 150, 0-462. https://doi.org/10.1016/S0012-821X(97)00082-4
  4. Bard E, Raisbeck G, Françoise You F, Jouzel J, 2000: Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, 52B, 985-992. https://doi.org/10.1034/j.1600-0889.2000.d01-7.x
  5. Barrett J, Bellamy D, Hug H, 2006: On the sensitivity of the atmosphere to the doubling of the carbon dioxide concentration and on water vapour feedback. E&E, 17(4), 603-607. https://sci- hub.wf/10.1260/095830506778644198
  6. Bengtsson L, Schwartz SE, 2013: Determination of a lower bound on Earth's climate sensitivity. Tellus B Chem Phys Meteorol, 65:1. DOI: 10.3402/tellusb.v65i0.21533
  7. Berry EX, 2021: The impact of human CO2 of atmospheric CO2. Sci Clim Change, 1.2, 213-249. https://scienceofclimatechange.org/wp-content/uploads/Berry-2021-Impact-of-human-CO2.pdf
  8. Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA, 2001: Low-frequency temperature variations from a northern tree ring density network. J Geophys Res Atmos, 106, 2929-2941. https://doi.org/10.1029/2000JD900617
  9. Bond G, 1997: A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Cli- mates.
  10. Science, 278(5341), 1257-1266. DOI: 10.1126/science.278.5341.1257
  11. CERES, 2021: The National Oceanic and Atmospheric Administration (NOAA), CERES EBAF- TOA Data: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAFTOA41Selection.jsp
  12. Chen D, Wang H, Sun J, Gao Ya, 2018: Pacific multi-decadal oscillation modulates the effect of Arctic oscillation and El Niño southern oscillation on the East Asian winter monsoon. Int J Clim, 38, 2808-2818. https://doi.org/10.1002/joc.5461
  13. Christy JA, 2017: Testimony. U.S. House Committee on Science, Space & Technology. https://docs.house.gov.pdf
  14. Cini Castagnoli G, Bonino G, Serio M, Sonett CP, 1992: Common spectral features in the 5500- year record of total carbonate in sea sediments and radiocarbon in tree rings. Radiocarbon, 34(3), 798-805. DOI: https://doi.org/10.1017/S0033822200064109
  15. Connolly R, Soon W, Connolly M, Baliunas S, Berglund, 2021: How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate . Res Astron Astrophys, 21, 31. https://iopscience.iop.org/article/10.1088/1674-4527/21/6/131/meta
  16. Connor C, 2013: Statement of Professor Connor. Ancient forest thaws from melting glacial tomb. https://www.livescience.com/39819-ancient-forest-thaws.html
  17. Crowley TJ, Lowery TS, 2000: How Warm Was the Medieval Warm Period? J Hum Environ Stud, 29(1), 51-54. https://doi.org/10.1579/0044-7447-29.1.51
  18. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H, 1984: North Atlantic climatic oscillations revealed by deep Greenland ice cores. Ge- ophys Monogr Ser Climate Processes and Climate Sensitivity 29, 288-298. https://doi.org/10.1029/GM029p0288
  19. Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218-220. https://doi.org/10.1038/364218a0
  20. Davis WJ, 2017: The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate 5(4), 76. https://doi.org/10.3390/cli5040076
  21. Davis W, Taylor P, Davis W, 2018: The Antarctic centennial oscillation: A natural paleoclimate cycle in the southern hemisphere that influences global temperature. Climate, 6(1), 3. https://doi.org/10.3390/cli6010003
  22. Davis WJ, Taylor PJ, Davis WB, 2019: The origin and propagation of the Antarctic centennial oscillation. Climate, 7(9), 112. https://doi.org/10.3390/cli7090112
  23. Driemel A, Augustine J, Behrens K, Colle S, Cox C, et. 2018: Baseline Surface Radiation Net- work (BSRN): structure and data description (1992-2017). Earth Sys Sci Data, 10(3), 1491-1501. https://doi.org/10.5194/essd-10-1491-2018
  24. Drotos G, Becker T, Mauritsen T, Stevens B, 2020: Global variability in radiative-convective equilibrium with a slab ocean under a wide range of CO2 concentrations. Tellus A: Dyn Meteorol Oceanogr, 72(1), 1-1. https://sci-hub.wf/10.1080/16000870.2019.1699387
  25. Ermakov VJ, Okhlopkov VP, Stozhkov YuI, 2009: Influence of cosmic rays and cosmic dust on the atmosphere and Earth's climate. Bull Russ Acad Sci: Phys, 73, 434-436. https://doi.org/10.3103/S1062873809030411
  26. Etminan E, Myhre G, Highwood EJ, Shine KP, 2016: Radiative forcing of carbon dioxide, me- thane, and nitrous oxide: A significant revision of methane radiative forcing. Geophys Res Lett 43:12614-12636. https://doi.org/10.1002/2016GL071930
  27. Feynman J, Fougere PF, 1984: Eighty-eight-year periodicity in solar-terrestrial phenomena con- firmed. J Geophys Res: Space Phys, 89, 3023-3027. https://doi.org/10.1029/JA089iA05p03023
  28. Fleming RJ, 2018: An updated review about carbon dioxide and climate change. Environ Earth Sci, 77(6), 262-. https://link.springer.com/article/10.1007/s12665-018-7438-y
  29. Folland CK, Parker DE, Kates FE, 1984: Worldwide marine temperature fluctuations 1856-1981. Nature, 310, 670-673. https://doi.org/10.1038/310670a0
  30. Folland CK, Parker DE, Kates FE, 1986: Sahel rainfall and worldwide sea temperatures, 1901- 85. Nature, 320, 602-607. https://doi.org/10.1038/320602a0
  31. Friedlingstein P, Jones MW, O'Sullivan M, Robbie MA, Hauck J, et al., 2020: Global Carbon Budget 2020. Earth Syst Sci Data 12:3269-3340. https://doi.org/10.5194/essd-12-3269-2020
  32. Gats, 2014: Spectral calculations tool, http://www.spectralcalc.com/info/about.php
  33. Gervais F, 2021: Climate sensitivity and carbon footprint. Sc Clim Change, 1.1, 70-97. https://sci- enceofclimatechange.org/wp-content/uploads/Gervais-2021-Climate-Sensitivity-Carbon-Foot- prints.pdf
  34. Gruber N, Clement D, Carter B, Feely RA, van Heuven S, Hoppema M, Ishii M, Key RM, Kozyr A, Lauvset SK, Lo Monaco C, Mathis JT, Murata A, Olsen A, Perez FF, Sabine, CL, Tanhua T, Wanninkhof R, 2019: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432), 1193-1199. doi: 10.1126/science.aau5153
  35. Hale GE, 1908: On the probable existence of a magnetic field in sunspots. Astrophys J, 28, 315- 343. 10.1086/141602
  36. HadCRUT4, 2021: HaDCRUT4 temperature data of Met Office Hadley Centre. https://www.met- office.gov.uk/hadobs/hadcrut4/
  37. Harde H, 2013: Radiation and heat transfer in the atmosphere: A comprehensive approach on a molecular basis. Int J Atmos Sci, ID 503727. https://doi.org/10.1155/2013/503727
  38. Harde H, 2017: Radiation transfer calculations and assessment of global warming by CO2. Int J Atmos Sci, https://downloads.hindawi.com/archive/2017/9251034.pdf
  39. Harde H, 2022: How Much CO2 and the Sun Contribute to Global Warming: Comparison of Simulated Temperature Trends with Last Century Observations. Sc Clim Change, 2.2, 105-133. https://scienceofclimatechange.org/wp-content/uploads/Harde-2022-CO2-Sun-Global-Warm- ing.pdf Harde H, Salby ML, 2021: What Controls the Atmospheric CO2 Level? Sci Clim Change, 1.1, 54-69. https://scienceofclimatechange.org/wp-content/uploads/Harde-and-Salby-2021-What- Controls-CO2.pdf
  40. Hartmann DL, 2015: Global Physical Climatology, Elsevier Science, USA. https://www.else- vier.com/books/global-physical-climatology/hartmann
  41. Hauck J, Zeising M, Le Quéré C, Gruber N, Bakker DCE, Bopp L, et al., 2020: Consistency and challenges in the ocean carbon sink estimate for the global carbon budget. Front Mar Sci, 7, 852. https://doi.org/10.3389/fmars.2020.571720
  42. HITRAN, 2021: High-Resolution Transmission Molecular Absorption data base, Harvard-Smith- sonian Center for Astrophysics. https://www.cfa.harvard.edu/hitran/
  43. Hoyt DV, Schatten KH, 1993: A discussion of plausible solar irradiance variations, 1700-1992.
  44. J Geophys Res, 98(A11), 18895-18906. https://doi.org/10.1029/93JA01944
  45. Hughes AG, Jones TR, Vinther BM, Gkinis V, Stevens CM, Morris V, Vaughn BH, Holme C, Markle BR, Whiter JWC, 2020: High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland. Clim Past, 16, 1369-1386. https://doi.org/10.5194/cp-16-1369-2020
  46. Humlum O, Stordahl K, Solheim J-E, 2013: The phase relation between atmospheric carbon di- oxide and global temperature. Glob Planet Change, 100, 51-69. https://www.sciencedi- rect.com/science/article/abs/pii/S0921818112001658?via%3Dihub
  47. Jones PD, Briffa KR, Barnett TP, Tett SFB, 1998: High-resolution paleoclimatic records for the last millennium: interpretation, integration, and comparison with General Circulation Model control-run temperatures. Holocene, 8(4), 455-471. https://doi.org/10.1191/095968398667194956
  48. IPCC, 2001: Climate Change 2001, The Physical Science Basis, TAR, (eds. Salomon S. et al.). Cambridge Univ. Press, UK. https://www.ipcc.ch/site/assets/up- loads/2018/03/WGI_TAR_full_report.pdf IPCC, 2007: Climate Change 2007, The Physical Science Basis, AR4, (eds. Salomon S. et al.). Cambridge Univ. Press, UK. https://www.ipcc.ch/report/ar4/wg1/ IPCC, 2013: Climate Change 2011, The Physical Science Basis, AR5, (eds. Salomon S. et al.). Cambridge Univ. Press, UK. https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Front- matter_FINAL.pdf IPCC, 2021: Climate Change 2021, The Physical Science Basis, AR6, Cambridge Univ. Press, UK. https://www.ipcc.ch/report/ar6/wg1/
  49. Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, et al., 2001: Global warming feedbacks on ter- restrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios, Glob Biogeochem Cycles, 15, J891-908. 10.1029/2000GB001375
  50. Joos F. Roth R, Fuglestvedt JS, Peters GP, Enting IG, 2013: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atm Chem Phys, 13(5): 2793-2825. doi:10.5194/acp-13-2793-2013
  51. Kauppinen J, Heinonen JT, Malmi PJ, 2014: Influence of relative humidity and clouds on the global mean surface temperature. E&E 25(2). https://doi.org/10.1260/0958-305X.25.2.389
  52. Kerr RA, 2000: A North Atlantic Climate Pacemaker for the Centuries. Science, 288,1984-1985. DOI: 10.1126/science.288.5473.1984
  53. Kiehl JT, Trenberth KE, 1997: Earth's annual global mean energy budget. Bull Amer Meteor Soc 90: 311-323. https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;
  54. Kissin YV, 2015: A simple alternative model for the estimation of the carbon dioxide effect on the Earth's energy balance. E&E, 26(8), 1319-1333. https://doi.org/10.1260/0958- 305X.26.8.1319
  55. Klyashtorin LB, Borisov V, Lyubushin A, 2009: Cyclic changes of climate and major commercial stocks of the Barents Sea. Mar Biol Res, 5, 4-17. https://doi.org/10.1080/17451000802512283
  56. Lean J, 1995: Construction of solar irradiance since 1610: Implications for climate change. Ge- ophys Res Lett 22: 3195-3198. https://doi.org/10.1029/95GL03093
  57. Lean J, 2004: Solar Irradiance Reconstruction, IGBP PAGES/World Data Center for Paleoclima- tology Data Contribution Series # 2004-035, NOAA/NGDC Paleoclimatology Program.
  58. Lean J, 2010: Cycles and trends in solar irradiance. WIREs Climate Change 1: 111-122. https://doi.org/10.1002/wcc.18
  59. Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele LP, Wagenbach D, Weller R and Worthy DE, 2010: Observations and modelling of the global distribution and long- term trend of atmospheric 14 CO2. Tellus 62B, 26-46. DOI: 10.1111/j.1600-0889.2009.00446.x
  60. Lewis N, Curry JA, 2015: The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim Dyn, 45(3-4), 1009-1023. https://doi.org/10.1007/s00382-014-2342-y
  61. Li Y, Wu D, Wang T, Chen L, Chenbin Z, 2023: Late Holocene temperature and precipitation variations in an alpine region of the northeastern Tibetan Plateau and their response to global climate change. Palaeogeogr Palaeoclimatol Palaeoecol 615(3), 111442. https://doi.org/10.1016/j.palaeo.2023.111442
  62. Lin YC, Fan CY, Damon PE, Wallick EI, 1975: Long-term modulation of cosmic-ray intensity and solar activity cycles, 14th International Cosmic Ray Conference, Germany, Munchen, 3, 995- 999. Max-Planck-Institut für extraterrestrische Physik, Germany. https://adsabs.har- vard.edu/full/1975ICRC....3..995L
  63. Liou KN, 1992: Radiation and cloud processes in the atmosphere. Oxford Univ. Press, UK. https://www.osti.gov/biblio/7081459
  64. LLNL, 2016: Lawrence Livermore National Laboratory, 14 C "Bomb Pulse" Pulse Forensics, https://cams.llnl.gov/cams-competencies/forensics/14c-bomb-pulse-forensics Locean, 2016: Oceans 13C, https://www.locean-ipsl.upmc.fr/oceans13c/indexAng.htm
  65. Loeb NG, Johnson GC, Thorsen TJ, Lyman JM, Rose FG, Kato S, 2021: Satellite and ocean data reveal marked increase in Earth's heating rate. Geophys Res Lett, 48, e2021GL093047. https://doi.org/10.1029/2021GL093047
  66. Loehle C, 2014: The epistemological status of general circulation models. Ecol Modell, 276(), 80-84. https://doi.org/10.1007/s00382-017-3717-7
  67. Lungqvist FC, 2010: A new reconstruction of temperature variability in the extra-tropical North- ern Hemisphere during the last two millennia. Geogr Ann, 92 A 3, 339-351. https://doi.org/10.1111/j.1468-0459.2010.00399.x
  68. Manabe S, Wetherald R, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24, 241-259. https://doi.org/10.1175/1520- 0469(1967)024<0241:TEOTAW>2.0.CO;
  69. Mann ME, Bradley RS, Hughes MK, 1999: Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys Res Lett, 26(6), 759-762. https://doi.org/10.1029/1999GL900070
  70. Marsh ND, Svensmark H, 2000: Low cloud properties influenced by cosmic rays. Phys Rev Lett, 85, 5004-5007. https://doi.org/10.1103/PhysRevLett.85.5004
  71. Meinshausen M, Nicholls MRJ, Lewis J, Gidden MJ, Vogel E, et al., 2020: The shared socio- economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev 13, 3571-3605. https://doi.org/10.5194/gmd-13-3571-2020
  72. Michell JFB, 1989: The "greenhouse" effect and climate change. Rev Geophys, 27(1), 115-139. https://doi.org/10.1029/RG027i001p00115
  73. Miskolczi FM, Mlynczak MG, 2004: The greenhouse effect and the spectral decomposition of the clear-sky terrestrial radiation. Idöjaras 108, 209-251. http://owww.met.hu/idojaras/IDOJA- RAS_vol108_No4_01.pdf
  74. Miskolczi FM, 2014: The greenhouse effect and the infrared radiative structure of the Earth's atmosphere. Dev Earth Sc 2, the greenhouse effect. https://www.researchgate.net/publica- tion/268507883_The_Greenhouse_Effect_and_the_Infrared_Radiative_Struc- ture_of_the_Earth's_Atmosphere
  75. Myhre G, Highwood EJ, Shine KP, Stordal F, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715- 2718. https://doi.org/10.1029/98GL01908
  76. Myhre G, Stordal F, Gausemel I, Nielsen CJ, Mathieu E, 2016: Line-by-line calculation of thermal infrared radiation for global condition: CFC-12 as an example. J Quant Spectros Radiat Transf 97, 317-331. https://doi.org/10.1016/j.jqsrt.2005.04.015
  77. NOAA, 2021: NCEP/NCAR Reanalysis Data. https://www.esrl.noaa.gov/psd/cgi- bin/data/timeseries/timeseries1.pl NOAA, 2018: The data: What 13 C tells us, the global view 2018. http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html.
  78. NOAA, 2022: Atlantic Multidecadal Oscillation AMO (2022). https://psl.noaa.gov/data/correla- tion/amon.us.long.data NSDC, 2020: Six tree-ring proxy data and one temperature data set. https://www1.ncdc.noaa.gov/pub/data/paleo/tree-ring/reconstruc- tions/n_hem_temp/briffa2001jgr3.txt
  79. Ohmura A, 2013: Physical basis for the temperature-based melt-index method. J Appl Meteorol 40, 753-761. https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;
  80. ONI, 2021: Oceanic Nino Index (ONI) of NOAA: https://ggweather.com/enso/oni.htm
  81. Ollila A, 2012: The roles of greenhouse gases in global warming. Energy Environ, 23(5), 781- 799. https://doi.org/10.1260/0958-305X.23.5.781
  82. Ollila A, 2013: Dynamics between clear, cloudy and all-sky conditions: cloud forcing effects. J Chem Biol Phys Sc 4(1), 557-575. https://www.researchgate.net/publication/274958251_Dynam- ics_between_clear_cloudy_and_all-sky_conditions_Cloud_forcing_effects
  83. Ollila A, 2014: Dev Earth Sci 2, 20-30 The potency of carbon dioxide (CO2) as a greenhouse gas. https://www.researchgate.net/publication/274956207_The_potency_of_carbon_dio- xide_CO2_as_a_greenhouse_gas
  84. Ollila A, 2017a: Warming effect reanalysis of greenhouse gases and clouds. Phys Sci Int J 13(2), 1-13. DOI: 10.9734/PSIJ/2017/30781. DOI: 10.9734/PSIJ/2017/30781
  85. Ollila A, 2017b: Semi empirical model of global warming including cosmic forces, greenhouse gases, and volcanic eruptions. Phy Sci Int J 15(2), 1-14. DOI:10.9734/PSIJ/2017/34187
  86. Ollila A, 2019: The greenhouse effect definition. Phy Sci Int J 23(2), 1-5. DOI: 10.9734/PSIJ/2019/v23i230149
  87. Ollila A, 2020a: The pause end and major temperature impacts during super El Niños are due to shortwave radiation anomalies. Phys Sc Int J 24(2):1-20. DOI: 10.9734/PSIJ/2020/v24i230174
  88. Ollila A, 2020b: The Greenhouse effect calculations by an iteration method and the issue of strat- ospheric cooling. Phy Sci Int J 24(7), 1-18. DOI: 10.9734/PSIJ/2020/v24i730199
  89. Ollila A, 2020c: Analysis of the simulation results of three carbon dioxide (CO2) cycle models. Phys Sc Int J 23(4),1-19. DOI: 10.9734/PSIJ/2019/v23i430168
  90. Ollila A, 2021: Global Circulations Models (GCMs) simulate the current temperature only if the shortwave radiation anomaly of 2000s has been omitted. Phys Sc Int J 40(17), 45-52. DOI:10.9734/CJAST/2021/v40i1731433
  91. Ollila A, Timonen M, 2022a: Two main temperature periodicities related to planetary and solar activity oscillations. Int J Clim, https://doi.org/10.1002/joc.7912
  92. Otto A, Otto FEL, Boucher O, Church J, Hegerl G, Forster PM, Gillett NP, Gregory J, Johnson GC, Knotty R, Lewis N, Lohmann U, Marotzke J, Myhre G, Shindell D, Stevens B, Allen MR, 2013: Energy budget constraints on climate response. Nat Geosci, 6(6), 415-416. https://doi.org/10.1038/ngeo1836
  93. Quay P, Sonnerup R, Westby T, Stutsman J, McNichol A, 2003: Changes in the 13 C/ 12 C of dis- solved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob Biogeochem 17(1), 4-1-4-20. https://doi.org/10.1029/2001GB001817
  94. Patterson RT, Prokoph A, Changa A, 2004: Late Holocene sedimentary response to solar and cosmic ray activity influenced climate variability in the NE Pacific. Sediment Geol, 172 , 67 - 84. https://doi.org/10.1016/j.sedgeo.2004.07.007
  95. Peristykh AN, Damon PE, 2003: Persistence of the Gleissberg 88-year solar cycle over the last ∼ 12,000 years: Evidence from cosmogenic isotopes. J Geophys Res: Space Phys, 108 (A1), 1003. https://doi.org/10.1029/2002JA009390
  96. Ramanathan V, Cicerone R, Singh H, Kiehl I, 1985: Trace gas trends and their potential role in climate change. J Geophys Res 90, 5547-5566. https://doi.org/10.1029/JD090iD03p05547
  97. Revelle R, Suess HE, 1957: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1), 18-27. https://doi.org/10.1111/j.2153-3490.1957.tb01849.x
  98. Sabine CL, Feely RA, Gruber, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T and Rios AF, 2004: The oceanic sink for the anthropogenic CO2. Science 305, 367-371. DOI: 10.1126/science.1097403
  99. Santer BD, Fyfe JC, Pallotta G, Flato GM, Meehl GA, England MH, Hawkins E, Mann ME, Painter JF, Bonfils C, Cvijanovic I, Mears C, Wentz GJ, Po-Chedley S, Fu Q and Zou C- Z, 2017: Causes of differences in model and satellite tropospheric warming rates. Nat Geosci 10, 478-485. https://doi.org/10.1038/ngeo2973
  100. Scafetta N, 2010: Empirical evidence for a celestial origin of the climate oscillations and its impli- cations. J Atmos Sol-Terr Phy 72, 951-970. https://doi.org/10.1016/j.jastp.2010.04.015
  101. Schlesinger ME, 1986: Equilibrium and transient climatic warming induced by increased atmos- pheric CO2. Clim Dyn, 1(1), 35-51. https://doi.org/10.1007/BF01277045
  102. Schlesinger ME, Ramankutty N, 1994: An oscillation in the global climate system of period 65- 70 years. Nature, 367, 723-726. https://doi.org/10.1038/367723a0
  103. Schildknecht D, 2020: Saturation of the infrared absorption by carbon dioxide in the atmos- phere. Int J Modern Phys B. https://arxiv.org/pdf/2004.00708.pdf
  104. Schmidt GA, Ruedy R, Miller RL , Lacis AA, 2010: Attribution of the present-day total green- house effect. J Geophys. Res. 115, D20106. https://agupubs.onlineli- brary.wiley.com/doi/full/10.1029/2010JD014287
  105. Schwabe SH, 1843: Sonnenbeobachtungen im Jahre 1843 (in German). Observations of the Sun in the year 1843. Astronomische Nachrichten 21, 233-236. 10.1002/asna.18440211505
  106. Segalstad TV, 1998: Carbon cycle modelling and the residence time of natural and anthropogenic atmospheric CO2: On the construction of "greenhouse effect global warming" dogma. The con- tinuing debate. European Science and Environmental Forum (ESEF), Cambridge, England. 184- 219. https://ww.researchgate.net/publication/237706208.pdf
  107. Shapiro AI, Schmutz W, Rozanov E; Schoell M, Haberreiter M. Shapiro AV, Nyeki S, 2011: A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, A&A, 529, A67, 1-8. https://doi.org/10.1051/0004-6361/201016173
  108. Smith CJ, Kramer RJ, Myhre G et al., 2018: Understanding rapid adjustments to diverse forcing agents. Geophys Res Lett, 45, 2023-2031. https://doi.org/10.1029/2018GL079826
  109. Steinhilber F, Abreu JA, Beer J, Brunner I, Christl M, Fischer H, Heikkilä U, Kubik PW, Mann M, McCracken KG, Miller H, Miyahara H, Oerter H, Wilhelms F, 2012: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. PNAS, 109(16), 5967-5971. https://www.pnas.org/doi/10.1073/pnas.1118965109
  110. Stine AR, Huybers P, Fung IY, 2009: Changes in the phase of annual cycle of surface tempera- ture. Nature, 457, 435-441. https://doi.org/10.1038/nature07675
  111. Srivastava A, Verkouteren M, 2018: Metrology for stable isotope reference materials: 13 C/ 12 C and 18 O/ 16 O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry. Anal Bioanal Chem 410, 4153-4163. https://doi.org/10.1007/s00216-018-1064-0
  112. Suess HE, 1980: The radiocarbon record in tree rings of the last 8000 years. Radiocarbon, 22(2), 200-209. https://www.cambridge.org/core/journals/radiocarbon/article/radiocarbon-record-in- tree-rings-of-the-last-8000-years/EBD9056098B2151DA8027942C338F514
  113. Trenberth KE, Fasullo JT, 2013: An apparent hiatus in global warming? Earth's Future, 1, 19- 32. https://doi.org/10.1002/2013EF000165
  114. UAH, 2022: UAH MSU temperature data set of lower troposphere, http://vor- tex.nsstc.uah.edu/data/msu/v6.0beta/tlt/uahncdc_lt_6.0beta5.txt
  115. Utrecht Universiteit, 2016: Radiocarbon dating, http://web.science.uu.nl/AMS/radiocarbon.htm Vedeler M, Jørgensen LB, 2013: Out of the Norwegian glaciers: Lendbreen -a tunic from the early first millennium AD. Antiquity 87, 788-801. https://doi.org/10.1017/S0003598X00049462
  116. Velasco Herrera VM, Mendoza B, Velasco Herrera G, 2015: Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astron, 34(), 221-233. https://sci-hub.wf/10.1016/j.newast.2014.07.009
  117. Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ, 2010: Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev, 29(3-4), 522-538. https://doi.org/10.1016/j.quascirev.2009.11.002
  118. Vinther BM, 2011: The medieval climate anomaly in Greenland ice core data. PAGES news, 19(1), 27. Vinther_2011-1_27.pdf
  119. Wijngaarden W and Happer W, 2020: Dependence of Earth's thermal radiation on five most abundant greenhouse gases. https://arxiv.org/abs/2006.03098
  120. Wild M, Hakuba MZ, Folini D, Dörig-Ott P, Schär C, Kato S, Long CN, 2019: The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct obser- vations and climate models. Clim Dyn 52, 4787-4812. https://doi.org/10.1007/s00382-018-4413-y
  121. Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J Geophys Res, 109(D19), D19105-https://doi.org/10.1029/2003JD004457