Natural Climate Drivers Dominate in the Current Warming
2023, Science of Climate Change
https://doi.org/10.53234/SCC202304/03Abstract
Anthropogenic global warming (AGW) is the prevailing theory of the IPCC for global warming. Greenhouse (GH) gases are the major drivers, whereas albedo, aerosols, and clouds have had cooling effects, and natural drivers have an insignificant role (<0.8 %). According to Assessment Report 6 (AR6), these radiative forcings (RF) have been a total of 2.70 Wm-2 causing a temperature increase of 1.27 °C in 2019. Many research studies are showing significantly lower RF and climate sensitivity values for anthropogenic climate drivers. Research studies offering natural climate drivers as the partial or total solution for global warming have gradually emerged like solar radiation changes, cosmic forces, and multidecadal, century-and millennial-scale oscillations. The cloud effects are still a major concern in General Circulation Models (GCMs). The cloudiness changes have a major role in cosmic effects like magnifying the warming effect of the Total Solar Irradiation (TSI). The 60-and 88-year oscillations are the best-known oscillations, which are commonly known as AMO (Atlantic Multidecadal Oscillation) and the Gleissberg cycle explaining the ups and downs of the global temperature in the 1900s. Mechanisms of long-term climate oscillations are still under debate. There are also essential differences between carbon cycle models and GH effect magnitude specifications. The synthesis of these natural climate drivers together with anthropogenic drivers constitutes an alternative theory called Natural Anthropogenic Global Warming (NAGW), in which natural drivers have a major role in dominating the warming during the current warm period. These results mean that there is no climate crisis and a need for prompt CO2 reduction programs.
References (121)
- Agnihotri R, Dutta K, Bhushan R, Somayajulu BLK, 2002: Evidence for solar forcing on the Indian monsoon during the last millennium. Earth and Planet Sci Lett, 198, 521-527. https://doi.org/10.1016/S0012-821X(02)00530-7
- Attolini MR, Cecchini S, Galli M, Nanni T, 1987: The Gleissberg and 130-year periodicity in the cosmogenic isotopes in the past: The Sun as a quasi-periodic system. Proceedings of the 20th International Cosmic Ray Conference, Moscow, 4, 323, Nauka, Moscow. https://articles.ad- sabs.harvard.edu/pdf/1987ICRC...20d.323A
- Bard E, Raisbeck G, Françoise You F, Jouzel J, 1997: Solar modulation of cosmogenic nuclide production over the last millennium: comparison between 14C and 10Be records. Earth & Planet Sci Lett, 150, 0-462. https://doi.org/10.1016/S0012-821X(97)00082-4
- Bard E, Raisbeck G, Françoise You F, Jouzel J, 2000: Solar irradiance during the last 1200 years based on cosmogenic nuclides. Tellus, 52B, 985-992. https://doi.org/10.1034/j.1600-0889.2000.d01-7.x
- Barrett J, Bellamy D, Hug H, 2006: On the sensitivity of the atmosphere to the doubling of the carbon dioxide concentration and on water vapour feedback. E&E, 17(4), 603-607. https://sci- hub.wf/10.1260/095830506778644198
- Bengtsson L, Schwartz SE, 2013: Determination of a lower bound on Earth's climate sensitivity. Tellus B Chem Phys Meteorol, 65:1. DOI: 10.3402/tellusb.v65i0.21533
- Berry EX, 2021: The impact of human CO2 of atmospheric CO2. Sci Clim Change, 1.2, 213-249. https://scienceofclimatechange.org/wp-content/uploads/Berry-2021-Impact-of-human-CO2.pdf
- Briffa KR, Osborn TJ, Schweingruber FH, Harris IC, Jones PD, Shiyatov SG, Vaganov EA, 2001: Low-frequency temperature variations from a northern tree ring density network. J Geophys Res Atmos, 106, 2929-2941. https://doi.org/10.1029/2000JD900617
- Bond G, 1997: A Pervasive Millennial-Scale Cycle in North Atlantic Holocene and Glacial Cli- mates.
- Science, 278(5341), 1257-1266. DOI: 10.1126/science.278.5341.1257
- CERES, 2021: The National Oceanic and Atmospheric Administration (NOAA), CERES EBAF- TOA Data: https://ceres-tool.larc.nasa.gov/ord-tool/jsp/EBAFTOA41Selection.jsp
- Chen D, Wang H, Sun J, Gao Ya, 2018: Pacific multi-decadal oscillation modulates the effect of Arctic oscillation and El Niño southern oscillation on the East Asian winter monsoon. Int J Clim, 38, 2808-2818. https://doi.org/10.1002/joc.5461
- Christy JA, 2017: Testimony. U.S. House Committee on Science, Space & Technology. https://docs.house.gov.pdf
- Cini Castagnoli G, Bonino G, Serio M, Sonett CP, 1992: Common spectral features in the 5500- year record of total carbonate in sea sediments and radiocarbon in tree rings. Radiocarbon, 34(3), 798-805. DOI: https://doi.org/10.1017/S0033822200064109
- Connolly R, Soon W, Connolly M, Baliunas S, Berglund, 2021: How much has the Sun influenced Northern Hemisphere temperature trends? An ongoing debate . Res Astron Astrophys, 21, 31. https://iopscience.iop.org/article/10.1088/1674-4527/21/6/131/meta
- Connor C, 2013: Statement of Professor Connor. Ancient forest thaws from melting glacial tomb. https://www.livescience.com/39819-ancient-forest-thaws.html
- Crowley TJ, Lowery TS, 2000: How Warm Was the Medieval Warm Period? J Hum Environ Stud, 29(1), 51-54. https://doi.org/10.1579/0044-7447-29.1.51
- Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup N, Hammer CU, Oeschger H, 1984: North Atlantic climatic oscillations revealed by deep Greenland ice cores. Ge- ophys Monogr Ser Climate Processes and Climate Sensitivity 29, 288-298. https://doi.org/10.1029/GM029p0288
- Dansgaard W, Johnsen SJ, Clausen HB, Dahl-Jensen D, Gundestrup NS, Hammer CU, Hvidberg CS, Steffensen JP, Sveinbjörnsdottir AE, Jouzel J, 1993: Evidence for general instability of past climate from a 250-kyr ice-core record. Nature, 364(6434), 218-220. https://doi.org/10.1038/364218a0
- Davis WJ, 2017: The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate 5(4), 76. https://doi.org/10.3390/cli5040076
- Davis W, Taylor P, Davis W, 2018: The Antarctic centennial oscillation: A natural paleoclimate cycle in the southern hemisphere that influences global temperature. Climate, 6(1), 3. https://doi.org/10.3390/cli6010003
- Davis WJ, Taylor PJ, Davis WB, 2019: The origin and propagation of the Antarctic centennial oscillation. Climate, 7(9), 112. https://doi.org/10.3390/cli7090112
- Driemel A, Augustine J, Behrens K, Colle S, Cox C, et. 2018: Baseline Surface Radiation Net- work (BSRN): structure and data description (1992-2017). Earth Sys Sci Data, 10(3), 1491-1501. https://doi.org/10.5194/essd-10-1491-2018
- Drotos G, Becker T, Mauritsen T, Stevens B, 2020: Global variability in radiative-convective equilibrium with a slab ocean under a wide range of CO2 concentrations. Tellus A: Dyn Meteorol Oceanogr, 72(1), 1-1. https://sci-hub.wf/10.1080/16000870.2019.1699387
- Ermakov VJ, Okhlopkov VP, Stozhkov YuI, 2009: Influence of cosmic rays and cosmic dust on the atmosphere and Earth's climate. Bull Russ Acad Sci: Phys, 73, 434-436. https://doi.org/10.3103/S1062873809030411
- Etminan E, Myhre G, Highwood EJ, Shine KP, 2016: Radiative forcing of carbon dioxide, me- thane, and nitrous oxide: A significant revision of methane radiative forcing. Geophys Res Lett 43:12614-12636. https://doi.org/10.1002/2016GL071930
- Feynman J, Fougere PF, 1984: Eighty-eight-year periodicity in solar-terrestrial phenomena con- firmed. J Geophys Res: Space Phys, 89, 3023-3027. https://doi.org/10.1029/JA089iA05p03023
- Fleming RJ, 2018: An updated review about carbon dioxide and climate change. Environ Earth Sci, 77(6), 262-. https://link.springer.com/article/10.1007/s12665-018-7438-y
- Folland CK, Parker DE, Kates FE, 1984: Worldwide marine temperature fluctuations 1856-1981. Nature, 310, 670-673. https://doi.org/10.1038/310670a0
- Folland CK, Parker DE, Kates FE, 1986: Sahel rainfall and worldwide sea temperatures, 1901- 85. Nature, 320, 602-607. https://doi.org/10.1038/320602a0
- Friedlingstein P, Jones MW, O'Sullivan M, Robbie MA, Hauck J, et al., 2020: Global Carbon Budget 2020. Earth Syst Sci Data 12:3269-3340. https://doi.org/10.5194/essd-12-3269-2020
- Gats, 2014: Spectral calculations tool, http://www.spectralcalc.com/info/about.php
- Gervais F, 2021: Climate sensitivity and carbon footprint. Sc Clim Change, 1.1, 70-97. https://sci- enceofclimatechange.org/wp-content/uploads/Gervais-2021-Climate-Sensitivity-Carbon-Foot- prints.pdf
- Gruber N, Clement D, Carter B, Feely RA, van Heuven S, Hoppema M, Ishii M, Key RM, Kozyr A, Lauvset SK, Lo Monaco C, Mathis JT, Murata A, Olsen A, Perez FF, Sabine, CL, Tanhua T, Wanninkhof R, 2019: The oceanic sink for anthropogenic CO2 from 1994 to 2007. Science, 363(6432), 1193-1199. doi: 10.1126/science.aau5153
- Hale GE, 1908: On the probable existence of a magnetic field in sunspots. Astrophys J, 28, 315- 343. 10.1086/141602
- HadCRUT4, 2021: HaDCRUT4 temperature data of Met Office Hadley Centre. https://www.met- office.gov.uk/hadobs/hadcrut4/
- Harde H, 2013: Radiation and heat transfer in the atmosphere: A comprehensive approach on a molecular basis. Int J Atmos Sci, ID 503727. https://doi.org/10.1155/2013/503727
- Harde H, 2017: Radiation transfer calculations and assessment of global warming by CO2. Int J Atmos Sci, https://downloads.hindawi.com/archive/2017/9251034.pdf
- Harde H, 2022: How Much CO2 and the Sun Contribute to Global Warming: Comparison of Simulated Temperature Trends with Last Century Observations. Sc Clim Change, 2.2, 105-133. https://scienceofclimatechange.org/wp-content/uploads/Harde-2022-CO2-Sun-Global-Warm- ing.pdf Harde H, Salby ML, 2021: What Controls the Atmospheric CO2 Level? Sci Clim Change, 1.1, 54-69. https://scienceofclimatechange.org/wp-content/uploads/Harde-and-Salby-2021-What- Controls-CO2.pdf
- Hartmann DL, 2015: Global Physical Climatology, Elsevier Science, USA. https://www.else- vier.com/books/global-physical-climatology/hartmann
- Hauck J, Zeising M, Le Quéré C, Gruber N, Bakker DCE, Bopp L, et al., 2020: Consistency and challenges in the ocean carbon sink estimate for the global carbon budget. Front Mar Sci, 7, 852. https://doi.org/10.3389/fmars.2020.571720
- HITRAN, 2021: High-Resolution Transmission Molecular Absorption data base, Harvard-Smith- sonian Center for Astrophysics. https://www.cfa.harvard.edu/hitran/
- Hoyt DV, Schatten KH, 1993: A discussion of plausible solar irradiance variations, 1700-1992.
- J Geophys Res, 98(A11), 18895-18906. https://doi.org/10.1029/93JA01944
- Hughes AG, Jones TR, Vinther BM, Gkinis V, Stevens CM, Morris V, Vaughn BH, Holme C, Markle BR, Whiter JWC, 2020: High-frequency climate variability in the Holocene from a coastal-dome ice core in east-central Greenland. Clim Past, 16, 1369-1386. https://doi.org/10.5194/cp-16-1369-2020
- Humlum O, Stordahl K, Solheim J-E, 2013: The phase relation between atmospheric carbon di- oxide and global temperature. Glob Planet Change, 100, 51-69. https://www.sciencedi- rect.com/science/article/abs/pii/S0921818112001658?via%3Dihub
- Jones PD, Briffa KR, Barnett TP, Tett SFB, 1998: High-resolution paleoclimatic records for the last millennium: interpretation, integration, and comparison with General Circulation Model control-run temperatures. Holocene, 8(4), 455-471. https://doi.org/10.1191/095968398667194956
- IPCC, 2001: Climate Change 2001, The Physical Science Basis, TAR, (eds. Salomon S. et al.). Cambridge Univ. Press, UK. https://www.ipcc.ch/site/assets/up- loads/2018/03/WGI_TAR_full_report.pdf IPCC, 2007: Climate Change 2007, The Physical Science Basis, AR4, (eds. Salomon S. et al.). Cambridge Univ. Press, UK. https://www.ipcc.ch/report/ar4/wg1/ IPCC, 2013: Climate Change 2011, The Physical Science Basis, AR5, (eds. Salomon S. et al.). Cambridge Univ. Press, UK. https://www.ipcc.ch/site/assets/uploads/2017/09/WG1AR5_Front- matter_FINAL.pdf IPCC, 2021: Climate Change 2021, The Physical Science Basis, AR6, Cambridge Univ. Press, UK. https://www.ipcc.ch/report/ar6/wg1/
- Joos F, Prentice IC, Sitch S, Meyer R, Hooss G, et al., 2001: Global warming feedbacks on ter- restrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) Emission Scenarios, Glob Biogeochem Cycles, 15, J891-908. 10.1029/2000GB001375
- Joos F. Roth R, Fuglestvedt JS, Peters GP, Enting IG, 2013: Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: a multi-model analysis. Atm Chem Phys, 13(5): 2793-2825. doi:10.5194/acp-13-2793-2013
- Kauppinen J, Heinonen JT, Malmi PJ, 2014: Influence of relative humidity and clouds on the global mean surface temperature. E&E 25(2). https://doi.org/10.1260/0958-305X.25.2.389
- Kerr RA, 2000: A North Atlantic Climate Pacemaker for the Centuries. Science, 288,1984-1985. DOI: 10.1126/science.288.5473.1984
- Kiehl JT, Trenberth KE, 1997: Earth's annual global mean energy budget. Bull Amer Meteor Soc 90: 311-323. https://doi.org/10.1175/1520-0477(1997)078<0197:EAGMEB>2.0.CO;
- Kissin YV, 2015: A simple alternative model for the estimation of the carbon dioxide effect on the Earth's energy balance. E&E, 26(8), 1319-1333. https://doi.org/10.1260/0958- 305X.26.8.1319
- Klyashtorin LB, Borisov V, Lyubushin A, 2009: Cyclic changes of climate and major commercial stocks of the Barents Sea. Mar Biol Res, 5, 4-17. https://doi.org/10.1080/17451000802512283
- Lean J, 1995: Construction of solar irradiance since 1610: Implications for climate change. Ge- ophys Res Lett 22: 3195-3198. https://doi.org/10.1029/95GL03093
- Lean J, 2004: Solar Irradiance Reconstruction, IGBP PAGES/World Data Center for Paleoclima- tology Data Contribution Series # 2004-035, NOAA/NGDC Paleoclimatology Program.
- Lean J, 2010: Cycles and trends in solar irradiance. WIREs Climate Change 1: 111-122. https://doi.org/10.1002/wcc.18
- Levin I, Naegler T, Kromer B, Diehl M, Francey RJ, Gomez-Pelaez AJ, Steele LP, Wagenbach D, Weller R and Worthy DE, 2010: Observations and modelling of the global distribution and long- term trend of atmospheric 14 CO2. Tellus 62B, 26-46. DOI: 10.1111/j.1600-0889.2009.00446.x
- Lewis N, Curry JA, 2015: The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim Dyn, 45(3-4), 1009-1023. https://doi.org/10.1007/s00382-014-2342-y
- Li Y, Wu D, Wang T, Chen L, Chenbin Z, 2023: Late Holocene temperature and precipitation variations in an alpine region of the northeastern Tibetan Plateau and their response to global climate change. Palaeogeogr Palaeoclimatol Palaeoecol 615(3), 111442. https://doi.org/10.1016/j.palaeo.2023.111442
- Lin YC, Fan CY, Damon PE, Wallick EI, 1975: Long-term modulation of cosmic-ray intensity and solar activity cycles, 14th International Cosmic Ray Conference, Germany, Munchen, 3, 995- 999. Max-Planck-Institut für extraterrestrische Physik, Germany. https://adsabs.har- vard.edu/full/1975ICRC....3..995L
- Liou KN, 1992: Radiation and cloud processes in the atmosphere. Oxford Univ. Press, UK. https://www.osti.gov/biblio/7081459
- LLNL, 2016: Lawrence Livermore National Laboratory, 14 C "Bomb Pulse" Pulse Forensics, https://cams.llnl.gov/cams-competencies/forensics/14c-bomb-pulse-forensics Locean, 2016: Oceans 13C, https://www.locean-ipsl.upmc.fr/oceans13c/indexAng.htm
- Loeb NG, Johnson GC, Thorsen TJ, Lyman JM, Rose FG, Kato S, 2021: Satellite and ocean data reveal marked increase in Earth's heating rate. Geophys Res Lett, 48, e2021GL093047. https://doi.org/10.1029/2021GL093047
- Loehle C, 2014: The epistemological status of general circulation models. Ecol Modell, 276(), 80-84. https://doi.org/10.1007/s00382-017-3717-7
- Lungqvist FC, 2010: A new reconstruction of temperature variability in the extra-tropical North- ern Hemisphere during the last two millennia. Geogr Ann, 92 A 3, 339-351. https://doi.org/10.1111/j.1468-0459.2010.00399.x
- Manabe S, Wetherald R, 1967: Thermal equilibrium of the atmosphere with a given distribution of relative humidity. J Atmos Sci 24, 241-259. https://doi.org/10.1175/1520- 0469(1967)024<0241:TEOTAW>2.0.CO;
- Mann ME, Bradley RS, Hughes MK, 1999: Northern hemisphere temperatures during the past millennium: Inferences, uncertainties, and limitations. Geophys Res Lett, 26(6), 759-762. https://doi.org/10.1029/1999GL900070
- Marsh ND, Svensmark H, 2000: Low cloud properties influenced by cosmic rays. Phys Rev Lett, 85, 5004-5007. https://doi.org/10.1103/PhysRevLett.85.5004
- Meinshausen M, Nicholls MRJ, Lewis J, Gidden MJ, Vogel E, et al., 2020: The shared socio- economic pathway (SSP) greenhouse gas concentrations and their extensions to 2500. Geosci Model Dev 13, 3571-3605. https://doi.org/10.5194/gmd-13-3571-2020
- Michell JFB, 1989: The "greenhouse" effect and climate change. Rev Geophys, 27(1), 115-139. https://doi.org/10.1029/RG027i001p00115
- Miskolczi FM, Mlynczak MG, 2004: The greenhouse effect and the spectral decomposition of the clear-sky terrestrial radiation. Idöjaras 108, 209-251. http://owww.met.hu/idojaras/IDOJA- RAS_vol108_No4_01.pdf
- Miskolczi FM, 2014: The greenhouse effect and the infrared radiative structure of the Earth's atmosphere. Dev Earth Sc 2, the greenhouse effect. https://www.researchgate.net/publica- tion/268507883_The_Greenhouse_Effect_and_the_Infrared_Radiative_Struc- ture_of_the_Earth's_Atmosphere
- Myhre G, Highwood EJ, Shine KP, Stordal F, 1998: New estimates of radiative forcing due to well mixed greenhouse gases. Geophys. Res. Lett. 25, 2715- 2718. https://doi.org/10.1029/98GL01908
- Myhre G, Stordal F, Gausemel I, Nielsen CJ, Mathieu E, 2016: Line-by-line calculation of thermal infrared radiation for global condition: CFC-12 as an example. J Quant Spectros Radiat Transf 97, 317-331. https://doi.org/10.1016/j.jqsrt.2005.04.015
- NOAA, 2021: NCEP/NCAR Reanalysis Data. https://www.esrl.noaa.gov/psd/cgi- bin/data/timeseries/timeseries1.pl NOAA, 2018: The data: What 13 C tells us, the global view 2018. http://www.esrl.noaa.gov/gmd/outreach/isotopes/c13tellsus.html.
- NOAA, 2022: Atlantic Multidecadal Oscillation AMO (2022). https://psl.noaa.gov/data/correla- tion/amon.us.long.data NSDC, 2020: Six tree-ring proxy data and one temperature data set. https://www1.ncdc.noaa.gov/pub/data/paleo/tree-ring/reconstruc- tions/n_hem_temp/briffa2001jgr3.txt
- Ohmura A, 2013: Physical basis for the temperature-based melt-index method. J Appl Meteorol 40, 753-761. https://doi.org/10.1175/1520-0450(2001)040<0753:PBFTTB>2.0.CO;
- ONI, 2021: Oceanic Nino Index (ONI) of NOAA: https://ggweather.com/enso/oni.htm
- Ollila A, 2012: The roles of greenhouse gases in global warming. Energy Environ, 23(5), 781- 799. https://doi.org/10.1260/0958-305X.23.5.781
- Ollila A, 2013: Dynamics between clear, cloudy and all-sky conditions: cloud forcing effects. J Chem Biol Phys Sc 4(1), 557-575. https://www.researchgate.net/publication/274958251_Dynam- ics_between_clear_cloudy_and_all-sky_conditions_Cloud_forcing_effects
- Ollila A, 2014: Dev Earth Sci 2, 20-30 The potency of carbon dioxide (CO2) as a greenhouse gas. https://www.researchgate.net/publication/274956207_The_potency_of_carbon_dio- xide_CO2_as_a_greenhouse_gas
- Ollila A, 2017a: Warming effect reanalysis of greenhouse gases and clouds. Phys Sci Int J 13(2), 1-13. DOI: 10.9734/PSIJ/2017/30781. DOI: 10.9734/PSIJ/2017/30781
- Ollila A, 2017b: Semi empirical model of global warming including cosmic forces, greenhouse gases, and volcanic eruptions. Phy Sci Int J 15(2), 1-14. DOI:10.9734/PSIJ/2017/34187
- Ollila A, 2019: The greenhouse effect definition. Phy Sci Int J 23(2), 1-5. DOI: 10.9734/PSIJ/2019/v23i230149
- Ollila A, 2020a: The pause end and major temperature impacts during super El Niños are due to shortwave radiation anomalies. Phys Sc Int J 24(2):1-20. DOI: 10.9734/PSIJ/2020/v24i230174
- Ollila A, 2020b: The Greenhouse effect calculations by an iteration method and the issue of strat- ospheric cooling. Phy Sci Int J 24(7), 1-18. DOI: 10.9734/PSIJ/2020/v24i730199
- Ollila A, 2020c: Analysis of the simulation results of three carbon dioxide (CO2) cycle models. Phys Sc Int J 23(4),1-19. DOI: 10.9734/PSIJ/2019/v23i430168
- Ollila A, 2021: Global Circulations Models (GCMs) simulate the current temperature only if the shortwave radiation anomaly of 2000s has been omitted. Phys Sc Int J 40(17), 45-52. DOI:10.9734/CJAST/2021/v40i1731433
- Ollila A, Timonen M, 2022a: Two main temperature periodicities related to planetary and solar activity oscillations. Int J Clim, https://doi.org/10.1002/joc.7912
- Otto A, Otto FEL, Boucher O, Church J, Hegerl G, Forster PM, Gillett NP, Gregory J, Johnson GC, Knotty R, Lewis N, Lohmann U, Marotzke J, Myhre G, Shindell D, Stevens B, Allen MR, 2013: Energy budget constraints on climate response. Nat Geosci, 6(6), 415-416. https://doi.org/10.1038/ngeo1836
- Quay P, Sonnerup R, Westby T, Stutsman J, McNichol A, 2003: Changes in the 13 C/ 12 C of dis- solved inorganic carbon in the ocean as a tracer of anthropogenic CO2 uptake. Glob Biogeochem 17(1), 4-1-4-20. https://doi.org/10.1029/2001GB001817
- Patterson RT, Prokoph A, Changa A, 2004: Late Holocene sedimentary response to solar and cosmic ray activity influenced climate variability in the NE Pacific. Sediment Geol, 172 , 67 - 84. https://doi.org/10.1016/j.sedgeo.2004.07.007
- Peristykh AN, Damon PE, 2003: Persistence of the Gleissberg 88-year solar cycle over the last ∼ 12,000 years: Evidence from cosmogenic isotopes. J Geophys Res: Space Phys, 108 (A1), 1003. https://doi.org/10.1029/2002JA009390
- Ramanathan V, Cicerone R, Singh H, Kiehl I, 1985: Trace gas trends and their potential role in climate change. J Geophys Res 90, 5547-5566. https://doi.org/10.1029/JD090iD03p05547
- Revelle R, Suess HE, 1957: Carbon dioxide exchange between atmosphere and ocean and the question of an increase of atmospheric CO2 during the past decades. Tellus, 9(1), 18-27. https://doi.org/10.1111/j.2153-3490.1957.tb01849.x
- Sabine CL, Feely RA, Gruber, Key RM, Lee K, Bullister JL, Wanninkhof R, Wong CS, Wallace DW, Tilbrook B, Millero FJ, Peng TH, Kozyr A, Ono T and Rios AF, 2004: The oceanic sink for the anthropogenic CO2. Science 305, 367-371. DOI: 10.1126/science.1097403
- Santer BD, Fyfe JC, Pallotta G, Flato GM, Meehl GA, England MH, Hawkins E, Mann ME, Painter JF, Bonfils C, Cvijanovic I, Mears C, Wentz GJ, Po-Chedley S, Fu Q and Zou C- Z, 2017: Causes of differences in model and satellite tropospheric warming rates. Nat Geosci 10, 478-485. https://doi.org/10.1038/ngeo2973
- Scafetta N, 2010: Empirical evidence for a celestial origin of the climate oscillations and its impli- cations. J Atmos Sol-Terr Phy 72, 951-970. https://doi.org/10.1016/j.jastp.2010.04.015
- Schlesinger ME, 1986: Equilibrium and transient climatic warming induced by increased atmos- pheric CO2. Clim Dyn, 1(1), 35-51. https://doi.org/10.1007/BF01277045
- Schlesinger ME, Ramankutty N, 1994: An oscillation in the global climate system of period 65- 70 years. Nature, 367, 723-726. https://doi.org/10.1038/367723a0
- Schildknecht D, 2020: Saturation of the infrared absorption by carbon dioxide in the atmos- phere. Int J Modern Phys B. https://arxiv.org/pdf/2004.00708.pdf
- Schmidt GA, Ruedy R, Miller RL , Lacis AA, 2010: Attribution of the present-day total green- house effect. J Geophys. Res. 115, D20106. https://agupubs.onlineli- brary.wiley.com/doi/full/10.1029/2010JD014287
- Schwabe SH, 1843: Sonnenbeobachtungen im Jahre 1843 (in German). Observations of the Sun in the year 1843. Astronomische Nachrichten 21, 233-236. 10.1002/asna.18440211505
- Segalstad TV, 1998: Carbon cycle modelling and the residence time of natural and anthropogenic atmospheric CO2: On the construction of "greenhouse effect global warming" dogma. The con- tinuing debate. European Science and Environmental Forum (ESEF), Cambridge, England. 184- 219. https://ww.researchgate.net/publication/237706208.pdf
- Shapiro AI, Schmutz W, Rozanov E; Schoell M, Haberreiter M. Shapiro AV, Nyeki S, 2011: A new approach to the long-term reconstruction of the solar irradiance leads to large historical solar forcing, A&A, 529, A67, 1-8. https://doi.org/10.1051/0004-6361/201016173
- Smith CJ, Kramer RJ, Myhre G et al., 2018: Understanding rapid adjustments to diverse forcing agents. Geophys Res Lett, 45, 2023-2031. https://doi.org/10.1029/2018GL079826
- Steinhilber F, Abreu JA, Beer J, Brunner I, Christl M, Fischer H, Heikkilä U, Kubik PW, Mann M, McCracken KG, Miller H, Miyahara H, Oerter H, Wilhelms F, 2012: 9,400 years of cosmic radiation and solar activity from ice cores and tree rings. PNAS, 109(16), 5967-5971. https://www.pnas.org/doi/10.1073/pnas.1118965109
- Stine AR, Huybers P, Fung IY, 2009: Changes in the phase of annual cycle of surface tempera- ture. Nature, 457, 435-441. https://doi.org/10.1038/nature07675
- Srivastava A, Verkouteren M, 2018: Metrology for stable isotope reference materials: 13 C/ 12 C and 18 O/ 16 O isotope ratio value assignment of pure carbon dioxide gas samples on the Vienna PeeDee Belemnite-CO2 scale using dual-inlet mass spectrometry. Anal Bioanal Chem 410, 4153-4163. https://doi.org/10.1007/s00216-018-1064-0
- Suess HE, 1980: The radiocarbon record in tree rings of the last 8000 years. Radiocarbon, 22(2), 200-209. https://www.cambridge.org/core/journals/radiocarbon/article/radiocarbon-record-in- tree-rings-of-the-last-8000-years/EBD9056098B2151DA8027942C338F514
- Trenberth KE, Fasullo JT, 2013: An apparent hiatus in global warming? Earth's Future, 1, 19- 32. https://doi.org/10.1002/2013EF000165
- UAH, 2022: UAH MSU temperature data set of lower troposphere, http://vor- tex.nsstc.uah.edu/data/msu/v6.0beta/tlt/uahncdc_lt_6.0beta5.txt
- Utrecht Universiteit, 2016: Radiocarbon dating, http://web.science.uu.nl/AMS/radiocarbon.htm Vedeler M, Jørgensen LB, 2013: Out of the Norwegian glaciers: Lendbreen -a tunic from the early first millennium AD. Antiquity 87, 788-801. https://doi.org/10.1017/S0003598X00049462
- Velasco Herrera VM, Mendoza B, Velasco Herrera G, 2015: Reconstruction and prediction of the total solar irradiance: From the Medieval Warm Period to the 21st century. New Astron, 34(), 221-233. https://sci-hub.wf/10.1016/j.newast.2014.07.009
- Vinther BM, Jones PD, Briffa KR, Clausen HB, Andersen KK, Dahl-Jensen D, Johnsen SJ, 2010: Climatic signals in multiple highly resolved stable isotope records from Greenland. Quat Sci Rev, 29(3-4), 522-538. https://doi.org/10.1016/j.quascirev.2009.11.002
- Vinther BM, 2011: The medieval climate anomaly in Greenland ice core data. PAGES news, 19(1), 27. Vinther_2011-1_27.pdf
- Wijngaarden W and Happer W, 2020: Dependence of Earth's thermal radiation on five most abundant greenhouse gases. https://arxiv.org/abs/2006.03098
- Wild M, Hakuba MZ, Folini D, Dörig-Ott P, Schär C, Kato S, Long CN, 2019: The cloud-free global energy balance and inferred cloud radiative effects: an assessment based on direct obser- vations and climate models. Clim Dyn 52, 4787-4812. https://doi.org/10.1007/s00382-018-4413-y
- Zhang Y, Rossow WB, Lacis AA, Oinas V, Mishchenko MI, 2004: Calculation of radiative fluxes from the surface to top of atmosphere based on ISCCP and other global data sets: Refinements of the radiative transfer model and the input data. J Geophys Res, 109(D19), D19105-https://doi.org/10.1029/2003JD004457