Academia.eduAcademia.edu

Outline

Thermodynamic class II Szekeres–Szafron solutions. Regular models

2020, Classical and Quantum Gravity

https://doi.org/10.1088/1361-6382/AB9B5F

Abstract

In a recent paper (Coll et al 2019 Class. Quantum Grav. 36 175004) we have studied a family of Szekeres-Szafron solutions of class II in local thermal equilibrium (singular models). In this paper we deal with a similar study for all other class II Szekeres-Szafron solutions without symmetries. These models in local thermal equilibrium (regular models) are analyzed and their associated thermodynamic schemes are obtained. In particular, we focus on the subfamily of solutions which are compatible with the generic ideal gas equation of state (p =knΘ), and we analyze in depth two notable interpretations that follow on from the choice of two specific thermodynamic schemes: firstly, as a generic ideal gas in local thermal equilibrium and, secondly, as a model having the homogeneous temperature of the FLRW limit. The models above are shown to fulfill the general necessary macroscopic requirements for physical reality (positivity of matter density, internal energy and temperature, energy conditions and compressibility conditions) in wide domains of the spacetime.

References (37)

  1. Plebański J 1964 Acta Phys. Pol. 26 963
  2. Eckart C 1940 Phys. Rev. 58 919
  3. Israel W 1960 Proc. R. Soc. London 259 129
  4. Lichnerowicz A 1966 Ann. Inst. Henri Poincaré 5 37
  5. Coll B, Ferrando J J and Sáez J A 2017 Gen. Relativ. Gravit. 49 66
  6. Coll B, Ferrando J J and Sáez J A 2020 Phys. Rev. D 101 064058
  7. Krasiński A 1997 Inhomogeneous Cosmological Models (Cambridge University Press, Cambridge)
  8. Krasiński A and Plebański J 2012 An Introduction to General Relativity and Cosmology (Cambridge University Press, Cambridge)
  9. Ellis G, Maartens R and MacCallum M A C 2012 Relativistic Cosmology (Cambridge University Press, Cambridge)
  10. Bolejko K, Célérier M N and Krasiński A 2011 Class. Quantum Grav. 28 164002
  11. Szekeres P 1975 Commun. Math. Phys. 41 55
  12. Szafron D A 1977 J. Math. Phys. 18 1673
  13. Hellaby C 2017 20 Class. Quantum Grav. 34 145006
  14. Georg I and Hellaby C 2017 Phys. Rev. D 95 124016
  15. Wainwright J 1977 J. Math. Phys. 18 672
  16. Szafron D A and Collins C B 1979 J. Math. Phys. 20 2354
  17. Barnes A and Rowlingson 1989 Class. Quantum Grav. 6 949
  18. Ferrando J J and Sáez J A 2018 Phys. Rev. D 97 044026
  19. Lima J A S and Tiomno J 1988 Gen. Rel. Grav.
  20. Lima J A S and Tiomno J 1989 Class. Quantum Grav. 6 L93
  21. Quevedo H and Sussman R A 1995 Class. Quantum Grav. 12 859
  22. Krasiński A, Quevedo H and Sussman R A 1997 J. Math. Phys. 38 2602
  23. Coll B, Ferrando J J and Sáez J A 2019 Class. Quantum Grav. 36 175004
  24. Stephani E, Kramer H, McCallum M A H, Hoenselaers C and Hertl E 2003 Exact Solutions of Einstein's Field Equations (Cambridge University Press, Cambridge)
  25. Coll B and Ferrando J J 1989 J. Math. Phys. 30 2918
  26. Anile A M 1989 Relativistic fluids and magneto-fluids (Cambridge University Press, Cambridge)
  27. Lichnerowicz A 1994 Manetohydrodynamics: waves and shock waves in curved space-time (Kluiver Academic Publishers, Dordrecht)
  28. Coll B., Ferrando J J 2005 Gen. Relativ. Gravit. 37 557
  29. Coll B, Ferrando J J and Sáez J A 2019 Phys. Rev. D 99 084035
  30. Israel W 1976 Ann. Phys. 100 310
  31. Israel W and Stewart J M 1979 Ann. Phys. 118 341
  32. Jou D, Casas-Vázquez J and Lebon G 2010 Extended Irreversible Thermodynamics (Springer, New York)
  33. Rezzola L and Zanotti O 2013 Relativistic hydrodynamics (Oxford University Press, Oxford)
  34. Kantowski R and Sachs R K 1966 J. Math. Phys. 7 443
  35. Coll B and Ferrando J J 1997 Physics of Relativistic Perfect Fluids. In: Some Topics on General Relativity and Gravitational Radiation. Proceedings of Spanish Relativity Meeting-96 (Paris: Ed. Frontières)
  36. Assad M J D and Lima J A S 1988 Gen. Relativ. Gravit. 20 527
  37. Szafron D and Wainwright J 1977 J. Math. Phys. 18 1668